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CHAPTER 1

Overview

Vector Psychometric Group, LLC, a North Carolina-based psychometric soft-
ware and consulting company, is pleased to announce the immediate avail-
ability of flexMIRTTM Version 3.7, an update to our multilevel and multiple-
group item response theory (IRT) software package for item analysis and test
scoring. flexMIRTTM fits a variety of unidimensional and multidimensional
IRT models to single-level and multilevel data using maximum marginal like-
lihood or modal Bayes via Bock-Aitkin EM (with generalized dimension re-
duction) or MH-RM estimation algorithms. The generalized dimension re-
duction EM algorithm, coupled with arbitrary user-defined parameter con-
straints, makes flexMIRTTM one of the most flexible IRT software programs
on the market today and the MH-RM algorithm allows users to efficiently
estimate high-dimensional models. Since Version 3.6, flexMIRTTM also im-
plements fully Bayesian Markov chain Monte Carlo estimation methods to
produce samples from the posterior distributions of item and group parame-
ters. flexMIRTTM produces IRT scale scores using maximum likelihood (ML),
maximum a posteriori (MAP), and expected a posteriori (EAP) estimation.
Multiple imputation scoring is now available when using the MH-RM algo-
rithm. flexMIRTTM (optionally) produces summed-score to IRT scale score
(EAP) conversion tables for unidimensional and multidimensional IRT mod-
els. As for the item types, flexMIRTTM can estimate any arbitrary mixtures
of 3-parameter logistic (3PL) model, logistic graded response model (which
includes 2PL and 1PL as special cases), and the nominal categories model (in-
cluding any of its restricted sub-models such as the generalized partial credit
model, partial credit model, and rating scale model) for both single-level and
multilevel data, in any number of groups.

flexMIRTTM also has some of the richest psychometric and statistical fea-
tures. Specialized commands are available to make the fitting of Diagnos-
tic Classification Models (DCMs) intuitive and relatively straight-forward.
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flexMIRTTM includes capabilities for conducting exploratory factor analysis
with analytic or target rotations for orthogonal or oblique factors, as well as
the ability to include latent regression covariates. In addition to fully imple-
menting many recently developed multilevel and multidimensional IRT mod-
els, flexMIRTTM supports numerous methods for estimating item parameter
standard errors: Supplemented EM, empirical cross-product approximation,
Fisher (expected) information matrix, Richardson extrapolation, forward dif-
ference, and sandwich covariance matrix. A multitude of model fit statistics for
dimensionality analysis, item-fit testing, and latent variable normality diagno-
sis are included in flexMIRT c©. Its multiple-group estimation features easily
facilitate studies involving differential item function (DIF) and test linking
(including vertical scaling).

A key innovation in flexMIRTTM is its ability to relax the ubiquitous mul-
tivariate normality assumption made in virtually all multidimensional IRT
models. With an extended dimension reduction algorithm, it supports the
non-parametric estimation of latent density shapes using empirical histograms
and Gaussian kernel-based smoothing for both unidimensional and hierarchical
(i.e., bifactor and testlet response theory) item factor models in any number of
groups, with support for constraints on group means and variances. Finally, it
has a full-featured built-in Monte Carlo simulation module that can generate
data from all models implemented in flexMIRTTM.

flexMIRTTM is easy to use. It has an intuitive syntax. It can import
data natively in space-, comma-, or tab- delimited formats. Windows-based
flexMIRTTM, with a friendly graphical user interface (GUI), is available in
both 32-bit and 64-bit flavors. flexMIRTTM was designed with cross-platform
compatibility and large-scale production use from the beginning. The compu-
tational engine of flexMIRTTM is written using standard C++, which ensures
that it can run on any platform where a C++ compiler exists. A modern
memory allocation scheme helps flexMIRTTM efficiently handle thousands of
items and millions of respondents, with no imposed upper limit on the size of
the problem.

flexMIRTTM is fast. For multidimensional and multilevel models that per-
mit dimension reduction, flexMIRTTM automatically reduces the amount of
quadrature computation to achieve a dramatic reduction in computational
time. As modern CPU architecture trends toward multi-core design, flexMIRTTM

implements two ways to use multi-threading to further speed up computations
by spreading the load automatically to the multiple available cores or process-
ing units.
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The system requirements for flexMIRTTM are minimal. Currently, flexMIRTTM

is only available for machines running Windows 7 or above (natively or via an
emulator/virtual machine). Administrative rights to the machine are required
for installation and .NET 4.5 (which should automatically update with Win-
dows) is also required. The free space needed for installation is negligible and
there is no minimum requirement regarding the amount of available RAM.
An active internet connection is required for license validation - if an internet
connection is not available for flexMIRTTM please contact us for assistance.
Despite the minimal requirements for flexMIRTTM , the estimation of complex
models may need significant CPU resources, RAM, and processing time.

This user’s manual is intended both as a guide to those trying to navigate
the complex features implemented in flexMIRTTM for the first time, and as a
reference source. It is assumed that the user is familiar with the theory and
applications of IRT. Please visit the website http://www.flexMIRT.com for
product updates, technical support, and feedback.

3

http://www.flexMIRT.com


CHAPTER 2

flexMIRTTM Syntax and Datafile Structure

We begin by discussing expectations for the structure of data files being sub-
mitted to flexMIRTTM as well as the basic structure of flexMIRTTM syntax.
This chapter is intended to familiarize new users with how data files should
be arranged (allowed delimiters, missing data placeholder values, etc.) as well
as provide a brief introduction to the general structure of flexMIRTTM syntax
files.

2.1. Datafile Structure
Data should be arranged so columns represent items and each observation
(or response pattern) has its own row in the dataset. Data files must use
space, tab, or comma delimiters between variables; flexMIRTTM is not able
to interpret Fortran-type statements for data processing, so individual values
must be separated by one of the previously noted delimiters. Data files sub-
mittted to flexMIRTTM may have a header row (AKA column labels/names
in the first row). If the data file does have a header row then users should
indicate this when providing the datafile name and location by also including
the command Header = Yes; - by default flexMIRTTM assumes there is no
header row and failing to include this command when a header row is present
will likely result in data read-in errors. Additionally, when Header = Yes; is
used, flexMIRTTM will pull the variable names from the header row and it is
not necessary that users provide a separate Varnames statement that names
the variables in the body of the flexMIRTTM syntax.

Missing data are indicated by -9 by default, although the missing data code
may be modified to any numeric value between -127 and 127. flexMIRTTM will
not intepret missing indicators commonly used by other statistical programs,
such as a blank or ”.’,’ correctly; such values should be recoded in the datafile
prior to attempting to submit the file to the program.

flexMIRTTM has the capability to analyze/score only a subset of the avail-
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able variables in a dataset. The optional Select and Exclude statements may
be used when defining the analysis and allow for a subset of the variables ini-
tially read from the data file to be utilized. The default is for all variables in
the datafile to be used for any scoring/analyses. Select allows users to specify
a subset of the available variables to be analyzed/scored while Exclude allows
users to tell which variables to exclude from analysis/scoring. For instance, if
we had variables ID and V1-V12 in our data set, we could use either Select
= V1-V12; or Exclude= ID; so that flexMIRTTM will not attempt to include
the ID variable in the IRT analyses. Note that only one of these statements
should be used in reference to a given data set; that is, Select and Exclude
statements should not both be used in reference to the same datafile.

Although flexMIRTTM has some data manipulation capabilities (recoding,
rekeying response using answer keys, etc.), it is expected that the user has
completed necessary data management checks prior to submitting data to the
program. An important check is to ensure that all response options have
observations.

2.2. Syntax Overview
Syntax files for flexMIRTTM may be created in the GUI by selecting “New”
or created using a flat text program (e.g., Notepad). If “New” is selected
within the flexMIRTTM GUI, a command file containing the skeleton code for
a basic analysis opens. Once you have modified this command file, it must be
saved prior to being able to submit the analysis to flexMIRTTM; the “Run”
button is disabled until the file has been saved to prevent the skeleton code
from being over-written. The file name extension for flexMIRTTM syntax files
is *.flexmirt but the program is able to run syntax files with other extensions
(e.g., *.txt).

Generally speaking, flexMIRTTM syntax files are divided into four required
sections, each of which provides instructions for distinct parts of the analysis.
The four sections, which will be discussed in more detail, are

1. <Project> – where you provide a title and a general description of the
analysis for record-keeping.

2. <Options> – where the type of analysis and options of the analysis are
specified.

3. <Groups> – where the input data and the IRT models are specified.
4. <Constraints> – where parameter constraints (such as equality or fixed

parameter values) or univariate priors may be specified.
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All four section headers must be present in every command file (e.g., even
if no constraints are applied to the parameters, the <Constraints> section
header must still be declared in the syntax). The other requirement is that all
statements in the flexMIRTTM syntax file must end with a semi-colon. Finally,
the commands in the syntax are not case-sensitive (but file names on certain
operating systems may be).

Within the <Project> section, there are two required commands, Title
= “ ”; and Description = “ ”;. The name of the title and the contents of
the description must be enclosed in double quotation marks.

The <Options> section is where the more technical aspects of the analysis
are specified. It is in this section that analysis details such as convergence
criteria, scoring methods, standard error estimation methods, or requests for
various fit indices may be specified. The only required command is Mode
= ;, where the user is asked to specify what type of analysis will be con-
ducted. The four options available are Classical, Calibration, Scoring,
and Simulation. Depending on the Mode of the analysis, there may be addi-
tional required commands, such as the type of IRT scoring to be conducted
in a Scoring analysis. These details will be covered as they emerge in the
examples.

As noted previously, <Groups> is the section where information regarding
the groups of item response data is provided. This includes the name(s) of the
file(s) containing the data set(s), the names of items, the number of groups
and participants, and the number of response options for each item, among
other things. Following the <Groups> section header, a group name must
be provided for the first group (even if there is only one group). The group
name is enclosed in percent signs (%), must start with a letter, and should
be something easy to remember (e.g., %Group1% or %Grade4% or %Female%
or %US%). The group names become important in specifying constraints in
multiple-group analyses. The name is arbitrary, but spaces are not allowed
when specifying group names. After a group name has been given, the data file
name where the item responses are located is specified, as well as the number
of participants in the group, variable names, the number of possible response
categories for each item, and the IRT model to be estimated (e.g., ThreePL,
Graded(5), etc).

The final section of flexMIRTTM syntax, <Constraints>, is reserved for
specifying constraints and prior distributions on the item parameters and la-
tent variable means and (co)variances. Although the section header is required,
there are no mandatory commands. Constraints and prior distributions may
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be placed on almost any aspect of the model, including means, covariances,
and the various item parameters. Details on how to specify constraints will be
discussed in examples that utilize constraints.
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CHAPTER 3

Basic Calibration and Scoring

In this chapter, we will familiarize users with flexMIRTTM and its syntax
by providing examples that demonstrate some standard classical test theory
(CTT) and IRT analyses, such as calibration and scoring. All syntax and
data files used in this manual are available in the Support section on the
flexMIRTTM website (https://vpgcentral.com/software/flexmirt/support
-v3-72/).

3.1. Dichotomous Classical Test Theory Analysis
flexMIRTTM now offers the ability to run CTT analyses, allowing users to ob-
tain estimates of coefficient alpha, item-total correlations, and alpha-if-deleted,
as well as printing observed frequencies and weighted summed score statistics
for each item. The first several examples will use data from two test forms
that resemble those used in North Carolina end-of-grade testing. The item
data are responses to 12 multiple choice items collected from 2844 test-takers,
with responses in the data file coded as correct (1) or incorrect (0).

Example 3-1: Classical test theory syntax

1 <Project>
2 Title = "CTT example";
3 Description = "12 dichotmous items, N = 2844 ";
4
5 <Options>
6 Mode = Classical;
7
8 <Groups>
9 %Group1%
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10 File = "g341-19.dat";
11 Varnames = v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12;
12 N = 2844;
13 Ncats (v1-v12) = 2;
14 Model (_ALL_) = Graded(2);
15 ItemWeights (v2) = (0,0.5);
16 <Constraints>

Following the previous discussion, section headers (denoted by their en-
closure within < and >) precede the commands. The <Project> header is
followed by a title and description, both of which will be printed in the out-
put. In the <Options> section, the Mode command declares this to be a clas-
sical test theory run via Mode = Classical;. After the <Groups> section
header, a name for the first (and only) group is provided, which is enclosed
within %s. Then the name of the data file (File = “ ”;), variable names
(Varnames = ;), number of examinees (N = ;), the number of observed cate-
gories for each item (Ncats( ) = ;), and the IRT model ultimately intended
to be fit to each item (Model( ) = ;) are provided. In this example, only
the file name was provided in the File statement. When the command file
(*.flexmirt) and the data file are in the same folder, the name of the data file
is sufficient for flexMIRTTM to locate it. If, however, the command file and
the data are in different directories, it is necessary to specify the full path in
the File statement. For example, an alternate statement might be File =
"C:\Users\VPG\Documents\flexMIRT\example 2-1\g341-19.dat";.

Note that for the Ncats statement, a variable naming shortcut was used,
which is only available when variable names end with consecutive integers.
As seen in the syntax, v1, v2, ..., v12 can be shortened to v1-v12. This
shorthand may be employed in any statement where variable names are pro-
vided. In the Model statement, a different variable name shorthand is em-
ployed. Here, rather than listing out the variables to be analyzed we use a
macro-type variable _ALL_ , which tells flexMIRTTM to apply the Model
statement to all items. This shorthand may be useful when variable names
are not sequential (i.e., when something like V1-V12 cannot be used) but is
somewhat limited in that all variables must have the same properties (e.g.,
all items must have the name number of response categories, be fit with the
same item model). Note, also, that the_ALL_ macro variable is only available
for use in the <Groups> section of flexMIRTTM syntax; attempts to use it in
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the <Constraints> section will be ignored and will likely result in errors or
unintended models.

In most cases, users will likely want to retain the default weighting of re-
sponses (e.g., a 0-response is given a weight of 0; a 1-response is given a weight
of 1) but the ItemWeights(vars) = ; command in the <Groups> section of
the syntax can be used to assign alternate weights (for instance, a 0-response
is given a weight of 0; a 1-reponse is given a weight of 0.5 would result from the
statement, ItemWeights(v2) = (0, 0.5);. Response category values as well
as default and user-specified item weights will be reflected in the individual
item reporting.

Output 3.1: CTT Output - Item Frequencies and Weighted Summed Score
Statistics

Output Files
Text results and control parameters: 2PLM_example_CTT-ctt.txt

Item and (Weighted) Summed-Score Statistics for Group 1: Group1

Item 1: v1
Category/Weight: 0/ 0.0 1/ 1.0 .

Freq.: 1251 1593 0
Listwise-Complete Freq.: 1251 1593

Average (wtd) Score: 6.72 9.12
Std. Dev. (wtd) Score: 2.00 1.83

Item 2: v2
Category/Weight: 0/ 0.0 1/ 0.5 .

Freq.: 251 2593 0
Listwise-Complete Freq.: 251 2593

Average (wtd) Score: 5.86 8.28
Std. Dev. (wtd) Score: 2.35 2.12

Item 3: v3
Category/Weight: 0/ 0.0 1/ 1.0 .

Freq.: 1456 1388 0
Listwise-Complete Freq.: 1456 1388

Average (wtd) Score: 7.00 9.18
Std. Dev. (wtd) Score: 2.04 1.89

...

The first section of the CTT output, opened by the Output viewer and
saved to a *-ctt.txt output file, provides observed item frequencies, both simple
observed and list-wise complete (meaning for only those observations with
non-missing responses to all items), as well as descriptive statisitics (mean
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and standard deviation) of weighted total summed scores associated with each
item response. As noted previously, in most cases, users will likely want to
retain the default weighting of responses (e.g., a 0-response is given a weight
of 0; a 1-reponse is given a weight of 1) but if item weights were used, the
user-supplied weights are reflected in the individial item reporting (such as
shown for Item 2 in the “Category/Weight” line), otherwise, default weights
are reported.

Following the summary information for the individual items, coefficient
alpha and related values are reported for the scale as a whole. Additionally,
the average response and standard deviations for each item are reported - in
the case of 0/1 items this average would be P+. Additionally, in this same
table, item-total correlations as well as the expected alpha if the item were to
be removed from the scale are also reported.

Output 3.2: CTT Output - Coefficient Alpha and Related Values

Classical item statistics are computed only for the listwise-complete data (N = 2844.00):

Coefficient alpha: 0.6515

Response Item-Total Alpha
Item Average Std.Dev. Correlation If Deleted

1 0.560 0.496 0.3408 0.6224
2 0.456 0.142 0.2457 0.6457
3 0.488 0.500 0.2888 0.6336
4 0.683 0.465 0.3331 0.6238
5 0.570 0.495 0.2913 0.6329
6 0.831 0.375 0.3344 0.6250
7 0.951 0.216 0.2661 0.6400
8 0.782 0.413 0.2848 0.6328
9 0.904 0.295 0.3307 0.6290

10 0.866 0.341 0.2974 0.6316
11 0.444 0.497 0.2903 0.6332
12 0.531 0.499 0.3287 0.6250

3.2. Single-Group 2PL Model Calibration
Within the IRT framework, the dichotomous responses of the previously de-
scribed data set may be fitted with either the 2PL model, if guessing is assumed
to be negligible, or with the 3PL model, which explicitly models guessing with
an additional parameter. Example syntax for fitting the 2PL model is pre-
sented first.

Example 3-2: 2PL Calibration Syntax
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1 <Project>
2 Title = "2PL example";
3 Description = "12 items, 1 Factor, 1 Group 2PL Calibration";
4
5 <Options>
6 Mode = Calibration;
7
8 <Groups>
9 %Group1%

10 File = "g341-19.dat";
11 Varnames = v1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12;
12 N = 2844;
13 Ncats(v1-v12) = 2;
14 Model(v1-v12) = Graded(2);
15
16 <Constraints>

As with the previous example, section headers (denoted by their enclo-
sure within < and >) precede the commands. Building to the previous syn-
tax example, for the Model statement , the Graded Response Model, with
two categories, is specified as Graded(2). This model is formally equivalent
to the 2PL model and, as such, flexMIRTTM does not implement the 2PL
model separately. Although not used in this example, it is useful to be aware
that multiple Ncat and Model statements can be specified within one group,
which is needed for an analysis of mixed item types. For example, if items 1
through 6 in the current data were dichotomous and items 7 through 12 were
five-category polytomous items, two Ncat statements (i.e., Ncats(v1-v6) =
2; Ncats(v7-v12)= 5;) and two Model statements (i.e., Model(v1-v6) =
Graded(2); Model(v7-v12) = Graded(5);) would be provided to fit appro-
priate models to the items.

There are no constraints placed on this model, so after the <Constraints>
section header is declared, the command file syntax ends. At the completion of
estimation, flexMIRTTM automatically opens the results in the output viewer.
The output is also saved into a text file named with the command file name
and “*-irt.txt” as the extension. The command file used in the first example
is “2PLM_example.flexmirt” and the output is saved to “2PLM_example-
irt.txt”. The output is presented in a straight-forward fashion, so those familiar
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with IRT and its parameters and fit values should find it easily understandable.
For completeness, however, we will review the output and highlight relevant
sections. Due to the length of the output file, it will be separated into parts
which are discussed in turn.
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Output 3.3: 2PL Calibration Output - Summary and Controls

flexMIRT(R) Engine Version 3.72 (64-bit)
Flexible Multilevel Multidimensional Item Response Modeling and Test Scoring
(C) 2013-2024 Vector Psychometric Group, LLC., Chapel Hill, NC, USA

2PLM example
12 items 1 Factor, 1 Group 2PLM Calibration

Summary of the Data and Dimensions
Missing data code -9

Number of Items 12
Number of Cases 2844

# Latent Dimensions 1

Item Categories Model
1 2 Graded
2 2 Graded
3 2 Graded
4 2 Graded
5 2 Graded
6 2 Graded
7 2 Graded
8 2 Graded
9 2 Graded

10 2 Graded
11 2 Graded
12 2 Graded

Bock-Aitkin EM Algorithm Control Values
Maximum number of cycles: 500
Convergence criterion: 1.00e-04
Maximum number of M-step iterations: 100
Convergence criterion for iterative M-steps: 1.00e-07
Number of rectangular quadrature points: 49
Minimum, Maximum quadrature points: -6.00, 6.00
Standard error computation algorithm: Cross-product of gradients

CPU processing times in seconds (may not equal clock time)
E-step computations: 0.13
M-step computations: 0.01
Standard error computations: 0.17
Goodness-of-fit statistics: 0.00
Total: 0.31

Output Files
Text results and control parameters: 2PLM_example-irt.txt
Technical information in a file: 2PLM_example-dbg.txt

Convergence and Numerical Stability
flexMIRT(R) engine status: Normal termination
Number of cycles completed: 27
Maximum parameter change (P#): 0.00008371 ( 13)
First-order test: Convergence criteria satisfied
Condition number of information matrix: 46.0221
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Log determinant of information matrix: 128.2635
Second-order test: Solution is a possible local maximum

In the first line of every output file, flexMIRTTM prints the version number
and bit-version (64 bit or 32 bit) of the engine used to complete the analy-
sis. If comparing results across different systems, users should ensure that
the same engine version of flexMIRTTM is being used and also be aware that
the 32-bit and 64-bit C++ compilers generate different object code so the
order of the floating point operations may be different, which can result in
small differences among reported values across the bit-versions of the same
flexMIRTTM engine version. It is recommended that users occasionally log
into their flexMIRTTM account and check if their version is the most current
version of the program available and update (for free, provided a valid license)
when necessary.

Following the flexMIRTTM version and copyright information, the output
begins by printing the title and description provided in the <Project> section
of the syntax file. A broad summary of the data and model is provided on
the next 4 lines, listing the missing value code, number of items, sample size,
and total number of dimensions. In the next section, the number of categories
and the IRT models are listed for each item. The various control values are
listed (e.g., convergence criteria, the maximum number of iterations, number
of quadrature points used, number of free parameters in the model) – if any
control values were changed from defaults, the information printed here serves
as verification.

Next, the program processing time is listed, both in total and broken down
into various stages. Any output files that were generated by the analysis are
named in the next section. The final part of this subsection of the output
reports if flexMIRTTM terminated normally and if the specified convergence
criteria were met and a stable solution has been obtained. Specifically, the
reported first-order test examines if the gradient has vanished sufficiently for
the solution to be a stationary point. The second-order test tests if the in-
formation matrix is positive definite, a prerequisite for the solution to be a
possible maximum. For the second-order test, reporting that the solution is
a possible local maximum simply means that the program reached a statisti-
cally desirable solution. The other possible message that may be printed for
the outcome of the second-order test is “Solution is not a maximum; caution
is advised.” If a warning message is received for either the first- or
second-order test, all parameter estimates should be taken as provi-
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sional and should not be used as final estimates, for future scoring,
etc. but, rather, should be used to diagnose possible issues with the
model/items.

The next section of the output provides the estimated item and group
parameters.

Output 3.4: 2PL Calibration Output - Item and Group Parameters

*** Random effects calibration in Group 1: Group1

2PLM example
12 items 1 Factor, 1 Group 2PLM Calibration

2PL Items for Group 1: Group1
Item Label P# a s.e. P# c s.e. b s.e.

1 v1 2 1.05 0.07 1 0.30 0.05 -0.29 0.05
2 v2 4 1.23 0.11 3 2.88 0.11 -2.35 0.15
3 v3 6 0.84 0.06 5 -0.05 0.04 0.06 0.05
4 v4 8 1.04 0.07 7 0.94 0.05 -0.90 0.06
5 v5 10 0.85 0.06 9 0.33 0.04 -0.39 0.06
6 v6 12 1.34 0.10 11 2.09 0.09 -1.56 0.09
7 v7 14 1.90 0.17 13 4.29 0.21 -2.26 0.12
8 v8 16 0.97 0.08 15 1.51 0.06 -1.56 0.10
9 v9 18 1.89 0.15 17 3.35 0.16 -1.78 0.08

10 v10 20 1.32 0.10 19 2.40 0.09 -1.82 0.10
11 v11 22 0.87 0.06 21 -0.26 0.04 0.30 0.05
12 v12 24 1.01 0.07 23 0.15 0.05 -0.15 0.05

2PLM example
12 items 1 Factor, 1 Group 2PLM Calibration

Group Parameter Estimates:
Group Label P# mu s.e. P# s2 s.e. sd s.e.

1 Group1 0.00 ---- 1.00 ---- 1.00 ----

Following a reprinting of the title and description, each item is listed in
its own row, with the provided item label (“Label”), flexMIRTTM assigned
parameter number (“P#”), estimated item parameters, and standard error
values going across. The IRT model fit in this example was the 2PLM, so
the reported item parameters are the slope (labeled a) and intercept (labeled
c). In addition, for unidimensional models the threshold/difficulty parameter
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(labeled b) is also reported; this value may be found from the other two pa-
rameters as b = c/− a. Below the item parameter table, the group parameters
are printed. In this example, we had only one group, so the mean and vari-
ance were fixed at 0 and 1, respectively, for model identification. That these
parameters were not estimated is indicated by both the lack of an assigned
parameter number and the dashes in the standard error columns.
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The item and test information functions, values for which are presented in
Output 2.3, are the focus of the next section of the output file. The title and
description are printed once again, followed by the label for the information
table. As may be seen, the values of theta used in the table range from -2.8
to 2.8, increasing in steps of 0.4. The information function values for each
item are presented on the appropriate row and the Test Information Function
(TIF) values, which sum the item information values at each theta value (plus
the contribution from the prior), are printed towards the bottom of the table.
Additionally, the expected standard error associated with each theta value is
printed. Finally, the marginal reliability, which is defined as the prior variance
minus the averaged error variance divided by the prior variance, is reported
underneath the table (see, for example, Thissen & Orlando, 2001 for additional
details). After the information and reliability section, the overall goodness of
fit (GOF) indices are presented, which appear in the next output box.

Output 3.6: 2PL Calibration Output - Goodness of Fit Indices

Statistics based on the loglikelihood of the fitted model:
-2loglikelihood: 33408.05

Akaike Information Criterion (AIC): 33456.05
Bayesian Information Criterion (BIC): 33598.92

Full-information fit statistics of the fitted model:
Degrees

G2 of freedom Probability F0hat RMSEA
2062.50 696 0.0001 0.7252 0.03

Degrees
X2 of freedom Probability F0hat RMSEA

7710.31 4071 0.0001 2.7111 0.02

When no option is specified, the reporting of GOF values will provide only
basic fit indices. These include the values for the −2×Log Likelihood, the
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
and when appropriate, the Pearson X2 statistic (labeled X2), the likelihood
ratio statistic (labeled G2), their associated degrees of freedom, the estimated
population discrepancy function value (labeled F0hat), and the RMSEA (Root
Mean Square Error of Approximation; e.g., Browne & Cudeck, 1993).
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3.3. Single-Group 3PL Model Calibration
The data in the previous section may also be suitable for the 3PL model, which
explicitly models examinees’ guessing.

Example 3-3: Single Group 3PL Calibration Syntax

1 <Project>
2 Title = "3PL example";
3 Description = "12 items, 1 Factor, 1 Group Calibration,
4 saving parameter estimates";
5
6 <Options>
7 Mode = Calibration;
8 GOF = Extended;
9 SavePRM = Yes;

10
11 <Groups>
12 %Group1%
13 File = "g341-19.dat";
14 Varnames = v1-v12;
15 N = 2844;
16 Ncats(v1-v12) = 2;
17 Model(v1-v12) = ThreePL;
18
19 <Constraints>
20 Prior Group1, (v1-v12), Guessing : Beta(1.0,4.0);

The syntax for this run differs from the previous one in several ways. In
the <Options> section, the parameter estimates are to be saved to a separate
output file (savePRM = Yes;) and additional GOF statistics were requested by
specifying GOF = Extended; as an option. In the <Groups> section the fitted
model is now the 3PL model. (Model keyword is ThreePL). As noted previ-
ously, our current data is scored (0/1) data, such as from multiple choice items
- if raw multiple choice data is to be supplied, users will find the Key command
(see Details of the Syntax chapter) useful for providing flexMIRTTM with a
scoring key.
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In the <Constraints> section, a prior distribution is imposed on the
Guessing parameters for all items. In this example the Beta(1.0,4.0) distri-
bution was used, which corresponds to a prior sample size of 5, with 1.0/(1.0+
4.0) = 0.2 as its mode. This prior indicates that the prior guessing probability
is equal to 0.2, as these multiple-choice items have 5 options. The Normal and
LogNormal distributions are also available when specifying priors. In relation
to the lower asymptote, the Normal prior applies a normal distribution prior
on the logit of the lower asymptote parameter. A prior of Normal(-1.39,
0.5) is a reasonable prior for the lower asymptote, with a mode around 0.20
in the typical g metric. Other common normal priors for the logit-g parameter
would be N(-1.09, 0.5) for items with 4 possible response options, N(-0.69, 0.5)
for items with 3 response options, and N(0.0, 0.5) for True/False type items.
The standard deviation of 0.5 is standard across all noted priors and is based
primarily on experience, in that it provides a prior that is diffuse enough to
allow estimated guessing parameters to move away from the mean value if
necessary but not so diffuse as to be uninformative.

The output for this analysis is quite similar to that of the previous run,
so only differences will be highlighted. As noted in the syntax discussion,
flexMIRTTM has been instructed to save the item and group parameter values
into a separate file. This results in an additional file name, with the “*-
prm.txt” extension, being listed in the output files. The layout of the item
parameter output table (presented in Output 2.5) is essentially the same as
before, with the slopes, thresholds, and difficulty values and their standard
errors reported first. In the last four columns of the table, the estimates for
the lower asymptote (both in its logit form and in terms of the pseudo-guessing
probability) are reported, as well as standard errors.
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In addition to the added parameters and output files, the GOF statement was
set to Extended, so additional fit statistics, namely marginal X2 values and
the local dependence (LD) statistics of Chen and Thissen (1997) are included
in the output. A table containing these values is printed between the group
parameter values and the Information Function values table. A large section
of this table is presented below. The values in the second column of this table
are the item-specific marginal X2, which may be tested against a chi-square
variable with degrees of freedom equal to the number of categories for that
item minus 1. In this case, all items fit well at the level of univariate margins.

Output 3.8: Single Group 3PL Calibration Output- Extended GOF Table
(Excerpt)

Marginal fit (Chi-square) and Standardized LD X2 Statistics for Group 1: Group1
Marginal

Item Chi2 1 2 3 4 5 6 7 8 9 10
1 0.0
2 0.0 -0.7n
3 0.0 -0.7p 2.0n
4 0.0 0.9p -0.6n 0.2p
5 0.0 -0.6n -0.0n -0.1n 5.3p
6 0.0 -0.5p -0.7n -0.7n -0.5p -0.3n
7 0.0 0.8n -0.4p -0.4n -0.6n 0.3n -0.7p
8 0.0 -0.5p -0.6p -0.7p 0.6n -0.4p 0.7p 0.0p
9 0.0 -0.6p 0.7p -0.4n -0.4n -0.5n -0.7p 4.4p 0.2n

10 0.0 2.5n 5.0p -0.7n 0.1n -0.5n -0.0n -0.0p -0.7n 1.4p
11 0.0 -0.6p 3.5n -0.1n -0.3p -0.4p 0.8p 0.0n -0.7p -0.7n -0.3p
12 0.0 -0.7p -0.6n 3.7p 0.3n -0.0n -0.3p -0.7p -0.6p 0.4n -0.1p

The remaining entries of the table provide pairwise diagnostic information
for possible local dependence. The values reported are standardized LD X2

values, one for each item pair, followed by either the letter “p” or the letter
“n”. Phi correlations are computed for both the model-implied and observed
bivariate tables - if the model implied correlation is lower than the observed
correlation for a given item pair, a “p” is printed after the calculated X2,
meaning “positive” LD. If the model implied correlation is higher, an “n” is
printed, indicating “negative” LD. Either a “p” or an “n” is printed after
every value in the table. As the reported values are standardized X2s, item
pairs with values larger than 3.0 may need to be examined further for possible
local dependence. It is important to recognize that the values reported are
indices and are not intended to be used literally as X2 values. Even with
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the provided guideline, users should also be aware that an examination of the
overall pattern of findings, in addition to individual values, is important when
interpreting results.

3.4. Single-Group 3PL EAP Scoring
There are situations when existing item parameters will be used and only
scoring for a new set of data is desired. This next example will introduce a
command file that does just that, using the saved parameter estimates from a
prior calibration run.

Example 3-4: 3PL EAP Scoring Example

1 <Project>
2 Title = "3PL EAP scoring example";
3 Description = "12 items, 1 Factor, 1 Group 3PL Scoring";
4
5 <Options>
6 Mode = Scoring;
7 ReadPRMFile= "3PLM_example-prm.txt";
8 Score = EAP;
9 saveSCO = Yes;

10
11 <Groups>
12 %Group1%
13 File = "g341-19.dat";
14 Varnames =v1-v12;
15 N = 2844;
16
17 <Constraints>

For scoring runs the <Project> section stays the same. The first change en-
countered is in the <Options> section, in that Mode is now set to Scoring.
Using the command ReadPRMFile, the name of the file that contains the item
parameter estimates is provided. In this case, the file was created by the
previous calibration run. For the interested reader, details regarding the for-
matting and structure of the -prm file are found in the Simulation chapter of
the manual.
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The type of IRT scale score estimation is selected using the Score = ;
command. For this example, Expected A Posteriori (EAP) scores will be
saved. We may also specify ML for maximum likelihood scoring, MAP for Max-
imum A Posteriori scoring, MI for multiple imputations (only available when
the MH-RM algorithim is used), or SSC for summed score to EAP conversion
tables. We have also specified that the scores should be saved into a sepa-
rate file, which will be labeled with the extension “*-sco.txt”. The command
requesting flexMIRTTM to output the estimated scores (SaveSCO = Yes;) is
redundant for most scoring methods, but it is needed if individual scores are
desired for the SSC scoring method. Without the SaveSCO = Yes; command,
SSC will produce only the summed score to scale score conversion table. No-
tice that this may be a desirable feature in some situations, when only the
conversion table is needed with actual scoring occurring at a much later stage.

The output of scoring runs differs from calibration runs so we have repro-
duced the entire scoring control output file, which has the extension“*-ssc.txt”,
in Output 2.7 below.

Output 3.9: 3PL EAP Scoring Output

3PL EAP scoring
12 items, 1 Factor, 1 Group Scoring

Summary of the Data and Dimensions
Missing data code -9

Number of Items 12
Number of Cases 2844

# Latent Dimensions 1

Item Categories Model
1 2 3PL
2 2 3PL
3 2 3PL
4 2 3PL
5 2 3PL
6 2 3PL
7 2 3PL
8 2 3PL
9 2 3PL
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10 2 3PL
11 2 3PL
12 2 3PL

Scoring Control Values
Response pattern EAPs are computed

Miscellaneous Control Values

Output Files
Text results and control parameters: 3PLM_score_example-ssc.txt
Text scale score file: 3PLM_score_example-sco.txt

3PL EAP scoring
12 items, 1 Factor, 1 Group Scoring

3PL Items for Group 1: Group1
Item a c b logit-g g

1 1.84 -0.56 0.31 -1.09 0.25
2 1.27 2.77 -2.17 -2.00 0.12
3 1.50 -0.98 0.65 -1.19 0.23
4 1.31 0.46 -0.35 -1.19 0.23
5 1.35 -0.42 0.31 -1.08 0.25
6 1.39 1.91 -1.37 -1.93 0.13
7 1.96 4.27 -2.18 -2.22 0.10
8 1.05 1.24 -1.19 -1.56 0.17
9 1.94 3.31 -1.71 -2.59 0.07

10 1.35 2.28 -1.69 -2.23 0.10
11 1.77 -1.40 0.79 -1.25 0.22
12 1.55 -0.52 0.33 -1.37 0.20

3PL EAP scoring
12 items, 1 Factor, 1 Group Scoring

Group Parameter Estimates:
Group Label mu s2 sd

1 Group1 0.00 1.00 1.00

As with the calibration output, the file starts with a general data summary
and echoing of values that were provided to flexMIRTTM. In the scoring mode,
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this section of the output is much shorter due to the fact that fewer control
parameters are available for modification. Of note in this section is the line
labeled “Scoring Control Values,” under which the type of IRT scoring method
used is printed. Below that, the output files generated are named and tables
containing the item and group parameters, as read in from the parameter file,
are printed to allow the user to verify the parameter values were read in as
expected.

The individual scores were saved into a “*-sco.txt” file. The score file
(3PLM_score_example-sco.txt) columns are arranged as follows: the group
number, the observation number, the scale score, and the standard error as-
sociated with the scale score. Optionally, following the group number and
the observation number, flexMIRTTM will print the value of a user-supplied
ID variable if the caseID command is utilized in the <Groups> section of the
syntax.

3.5. Single-Group 3PL ML Scoring
As noted, maximum likelihood scores are also available. One issue that may
occur when using ML scores is that extreme response patterns on either end of
the continuum (e.g., all correct or all incorrect) are associated with undefined
or unreasonable theta estimates. When Score = ML; the user is required to
specify the desired maximum and minimum scores via the MaxMLscore and
MinMLscore keywords, to obtain practical theta estimates for such cases.

Example 3-5: 3PL ML Scoring example(excerpt)

5 <Options>
6 Mode = Scoring;
7 ReadPRMFile= "3PLM_example-prm.txt";
8 Score = ML;
9 SaveSCO = Yes;
10 MaxMLscore= 3.5;
11 MinMLscore= -5.5;

13 <Groups>
14 %Group1%
15 File = "g341-19.dat";
16 Varnames =v1-v12;
17 N = 2844;
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18
19 <Constraints>

This syntax is substantially the same as the previous example so only an ex-
cerpt is presented. The notable differences are the change from Score = EAP;
to Score = ML; and the additional commands MaxMLscore and MinMLscore
used to “rein in” the extreme ML estimates. Below, we present the first 10
cases of the associated -sco.txt file, where the scores were saved.

Output 3.10: 3PL ML Scoring Output

1 1 2 -0.198234 0.573388
1 2 3 1.427265 0.784667
1 3 2 0.113716 0.680658
1 4 3 1.427265 0.784667
1 5 3 -0.675141 0.625639
1 6 3 0.637464 0.606990
1 7 3 1.382694 0.792826
1 8 3 -1.205723 0.628273
1 9 2 3.500000 99.990000
1 10 3 0.859248 0.658306

Like the previous -sco file, the first column indicates group membership and
the second column provides the flexMIRTTM assigned observation number.
The third column reports the number of iterations to reach the reported score.
The fourth and fifth columns are the ML theta estimate and the associated
SE, respectively. As can be seen for observation 9, our specified maximum of
3.5 was applied. Because the reported value was assigned as a result of our
MaxMLscore statement, the reported SE is 99.99 to indicate that the score was
assigned, rather than estimated.

3.6. Polytomous Classical Test Theory Analysis
The newly introduced Mode = Classical; is also available for use with poly-
tomous item data, allowing users to obtain estimates of coefficient alpha, item-
total correlations, and alpha-if-deleted, as well as printing observed frequencies
and weighted summed score statistics for each item. All reported values are
estimated using Pearson correlations. This example employs data from 3000
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simulees, using parameter values reported in Table 1 of Edwards’ (2009) pa-
per as generating values. These data were constructed to mimic responses
collected on the Need for Cognition Scale (Cacioppo, Petty, & Kao, 1984),
which is an 18 item scale that elicits responses on a 5-point Likert-type scale,
asking participants to indicate the extent to which the content of the item
prompt describes them. We have introduced missing values and a response
category that does not have any observed responses into this simulated data.

Example 3-6: Classical syntax - polytomous data

1 <Project>
2 Title = "CTT example";
3 Description = "CTT: 18 5-cat items, N = 3000";
4
5 <Options>
6 Mode = Classical;
7
8 <Groups>
9 %Group1%

10 File ="NCSsim_MISS.dat";
11 Varnames =v1-v18;
12 N = 3000;
13 Ncats(v1-v18) = 5;
14 Code(v1-v18) = (1,2,3,4,5), (0,1,2,3,4);
15 Model(v1-v18) = Graded(5);
16
17 <Constraints>

As with the previous CTT analysis syntax, we have set Mode = Classical;,
specified the data file, variable names, sample size, the number of categories
per item, and the expected model to be used when the items are calibrated
in an IRT model. The only new command encountered in this example is the
Code = ; statement in the <Groups> section. The internal representation of
item response data in flexMIRTTM is zero-based (i.e., response options must
start at zero and go up sequentially). The raw item response data file for
this example (NCSsim_MISS.dat) labels the categories as 1 through 5, so re-
coding is necessary. The Code statement does this for variables v1-v18 by
specifying the original values in the first pair of parentheses and, following
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a comma, the desired recoded values in a second set of parentheses. In the
syntax, we have simply reduced each raw response value by one, making the
reponse codes zero-based. An additional possible use of the Code command is
something like Code(v1-v5)=(1,2,3,4,5),(4,3,2,1,0); which would both
reverse code items (if needed), as well as make the recoded item response data
zero-based.

Output 3.11: Polytomous Classical Analysis - Example Item Summaries

Item and (Weighted) Summed-Score Statistics for Group 1: Group1

Item 1: v1
Category/Weight: 0/ 0.0 1/ 1.0 2/ 2.0 3/ 3.0 4/ 4.0 .

Freq.: 254 772 688 1047 239 0
Listwise-Complete Freq.: 201 587 532 875 218

Average (wtd) Score: 24.87 32.99 39.66 47.35 54.48
Std. Dev. (wtd) Score: 9.96 9.87 9.06 8.46 7.87

Item 2: v2
Category/Weight: 0/ 0.0 1/ 1.0 2/ 2.0 3/ 3.0 4/ 4.0 .

Freq.: 137 575 561 1349 378 0
Listwise-Complete Freq.: 110 426 442 1089 346

Average (wtd) Score: 21.25 29.40 36.98 44.92 53.90
Std. Dev. (wtd) Score: 9.31 9.41 8.53 8.66 7.56

Item 3: v3
Category/Weight: 0/ 0.0 1/ 1.0 2/ 2.0 3/ 3.0 4/ 4.0 .

Freq.: 166 609 0 1135 503 587
Listwise-Complete Freq.: 166 609 0 1135 503

Average (wtd) Score: 23.44 30.73 --- 43.99 52.15
Std. Dev. (wtd) Score: 9.42 9.05 --- 8.17 8.22

...

As with the dichotomous classical example, individial item information is
reported first. Due to the missing data in the NCSsim_MISS data file, the
reported Frequency values and Listwise-Complete Frequency values now differ
for all items. The missing responses are confined to item v3, which we can see
by the 587 cases listed as “.” in the v3 item summary. Additionally, in item
v3, we find that recoded response category of 2 (originally 3 in the raw data
file) has no observations; that is, no respondents used this middle category as
a response option - this information will become important when we attempt
to calibrate these items using this data.
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Output 3.12: Polytomous Classical Analysis - Coefficient Alpha and Related
Values

Classical item statistics are computed only for the listwise-complete data (N = 2413.00):

Coefficient alpha: 0.8975

Response Item-Total Alpha
Item Average Std.Dev. Correlation If Deleted

1 2.133 1.133 0.6210 0.8895
2 2.470 1.078 0.6593 0.8885
3 2.497 1.259 0.6644 0.8878
4 2.446 1.129 0.6471 0.8887
5 2.530 1.057 0.5808 0.8909
6 1.835 1.192 0.5304 0.8925
7 2.230 1.165 0.5491 0.8918
8 1.771 1.127 0.3527 0.8979
9 1.767 1.156 0.4868 0.8938

10 2.661 0.994 0.5584 0.8917
11 2.542 1.057 0.6272 0.8895
12 2.623 1.074 0.5871 0.8907
13 1.821 1.104 0.5013 0.8933
14 2.545 1.122 0.5682 0.8912
15 2.453 1.093 0.6101 0.8900
16 1.920 1.207 0.3851 0.8973
17 2.317 1.198 0.5355 0.8923
18 2.370 1.119 0.3081 0.8992

The coefficent alpha and related values follow the item summaries in the in
-ctt.txt output file. As can be seen by the output label, flexMIRTTM reports
such values using only the listwise-complete data - as we found in the item
summary section, item v3 had 587 missing values. The reported classical
analyses reflect this (3000- 587 = 2413) appropriately.

3.7. Graded Model Calibration and Scoring
Example syntax for a combined calibration and scoring run is now presented.
flexMIRTTM code for the graded response model, which may be used with two
or more ordered response options (e.g., Samejima, 1969), is also introduced.

Example 3-7: Graded Model Combined Calibration and Scoring Syntax with
Recoding

1 <Project>
2 Title = "NCS example";
3 Description = "18 items, 1 Factor, 1 Group Calibration
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4 and Scoring";
5 <Options>
6 Mode = Calibration;
7 saveSCO = Yes;
8 Score = MAP;
9 GOF = Extended;

10
11 <Groups>
12 %Group1%
13 File ="NCSsim_MISS.dat";
14 Varnames =v1-v18;
15 N = 3000;
16 Ncats(v1,v2,v4-v18) = 5;
17 Ncats(v3) = 4;
18 Code(v1,v2,v4-v18) = (1,2,3,4,5), (0,1,2,3,4);
19 Code(v3) = (1,2,4,5), (0,1,2,3);
20 Model(v1,v2,v4-v18) = Graded(5);
21 Model(v3) = Graded(4);
22
23 <Constraints>

The standard syntax necessary for a calibration is supplied. Of note in
this command file is that even though this is a calibration run, we have also
requested MAP scores be saved. This combination of commands is a short-cut
to a combined calibration and scoring run, in which the calibration is explicitly
requested and the SaveSCO=Yes; command implicitly requests a scoring run,
using the estimated parameter values from the calibration.

From examining the data, we know that the response categories in the
data file start at 1 and go up and based on the previous classical output, we
know that item v3 does not have any observed responses of 3. If submitted to
flexMIRT with non-zero based and non-sequential categories (e.g., 1,2,4,5) an
error will be returned. We have included two Code statements in our syntax,
one for the 17 items needing only to be recoded to zero-based values and a
separate recoding statement for v3, to address the missing response category
(as well as obtain zero-based values).

flexMIRTTM makes no assumptions about the regularity of item intercepts,
so it is not possible to estimate, say the boundary between response category 2
and category 3, when no observations used the available “3” response. Because
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of this, the fact that no raw 3/zero-based coding 2s were seen in item v3 needs
to be addressed before submitting the calibration analysis. The most typi-
cal technique for managing such response anomolies is to collapse/recode the
data- we have done so in our second Code statement, Code(v3) = (1,2,4,5),
(0,1,2,3);. We find that the original response value of 3 has been omitted
from our Code statement, because there are no observed 3s in the data set.
Based on the values in the second half of the Code statement, we ensure that
flexMIRTTM will be provided with sequential, observed response categories;
specifically, all 1s will be recoded to 0s, all 2s will be recoded to 1s, all 4s
will be recoded to 2s and all 5s will be recoded to 3s. Because of this missing
response category, item v3 also needs a separate Model statement from the
other items as v3 only has 4 response categories, not the 5 response categories
with observed responses seen in all other items.

With respect to the output, the primary changes from previous examples
are the additional parameter values in the item parameter table. As may
be seen from the two item parameter estimate output tables below there are
multiple intercepts (or equivalently, thresholds) for each item. For conve-
nience, both of these parameterizations (intercepts and thresholds) are pre-
sented in separate tables. However, only the intercept values will be saved
to the -prm file, if it is requested. This behavior can be modified by adding
the statement SlopeThreshold= Yes; to the <Options> section. When the
SlopeThreshold keyword is invoked, threshold values, rather than intercept
values, will be saved to the -prm file.

Output 3.13: Graded Model Calibration - Slopes and Intercepts

Graded Items for Group 1: Group1
Item Label P# a s.e. P# c 1 s.e. P# c 2 s.e. P# c 3 s.e. P# c 4 s.e.

1 v1 5 1.58 0.06 1 3.25 0.09 2 0.94 0.06 3 -0.41 0.05 4 -3.34 0.09
2 v2 10 1.85 0.06 6 4.36 0.12 7 1.80 0.07 8 0.48 0.06 9 -2.92 0.09
3 v3 14 1.88 0.07 11 3.89 0.12 12 1.07 0.07 13 -2.27 0.08
4 v4 19 1.72 0.06 15 4.10 0.12 16 1.64 0.06 17 0.35 0.06 18 -2.61 0.08
5 v5 24 1.45 0.05 20 4.35 0.12 21 1.72 0.06 22 0.47 0.05 23 -2.35 0.07

...
16 v16 79 0.79 0.04 75 2.13 0.06 76 0.20 0.04 77 -0.59 0.04 78 -2.69 0.07
17 v17 84 1.17 0.05 80 3.28 0.09 81 0.95 0.05 82 0.00 0.05 83 -2.07 0.06
18 v18 89 0.61 0.04 85 2.83 0.08 86 1.16 0.05 87 0.21 0.04 88 -2.13 0.06
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Output 3.14: Graded Model Calibration - Slopes and Thresholds

Graded Items for Group 1: Group1
Item Label P# a s.e. b 1 s.e. b 2 s.e. b 3 s.e. b 4 s.e.
1 v1 5 1.58 0.06 -2.05 0.07 -0.60 0.04 0.26 0.03 2.11 0.07
2 v2 10 1.85 0.06 -2.35 0.08 -0.97 0.04 -0.26 0.03 1.57 0.05
3 v3 14 1.88 0.07 -2.06 0.07 -0.57 0.04 1.21 0.05
4 v4 19 1.72 0.06 -2.38 0.08 -0.95 0.04 -0.21 0.03 1.51 0.05
5 v5 24 1.45 0.05 -3.01 0.12 -1.19 0.05 -0.33 0.04 1.63 0.06
...

16 v16 79 0.79 0.04 -2.68 0.14 -0.25 0.05 0.75 0.06 3.39 0.18
17 v17 84 1.17 0.05 -2.80 0.11 -0.81 0.05 -0.00 0.04 1.77 0.07
18 v18 89 0.61 0.04 -4.62 0.31 -1.88 0.13 -0.35 0.07 3.47 0.23

3.8. 1PL Model Fitted to Response Pattern Data
Up to this point, analyses have been conducted on raw (individual) data,
in which each line in the data set represents responses from an individual.
flexMIRTTM is also able to handle data that are grouped by response patterns.
This example uses the well-known LSAT6 data set, in which the individuals
have been grouped by response patterns. There are 1000 examinees and 5
dichotomous items. The first use of constraints in the <Constraints> section
is also presented, demonstrating how to fit a 1PL model in flexMIRTTM.

Example 3-8: 1PL Calibration and Scoring with Response Pattern Data

1 <Project>
2 Title = "LSAT 6";
3 Description= "5 Items 1PL N=1000 Grouped Data";
4
5 <Options>
6 Mode = Calibration;
7 GOF = Complete;
8 JSI = Yes;
9 HabermanResTbl = Yes;

10 SX2Tbl = Yes;
11 FactorLoadings = Yes;
12 SaveSCO = No;
13 Score =SSC;
14
15 <Groups>
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16
17 %Group1%
18 File ="lsat6grp.dat";
19 Varnames = v1-v5, w;
20 Select= v1-v5; // only the first 5 variables
21 CaseWeight= w;
22 N=30;
23 /* <- Starts a Block Comment
24 For grouped data, N = is rows in data set, not total N
25 Ends a Block Comment -> */
26 Ncats(v1-v5) = 2;
27 Model(v1-v5) = Graded(2);
28
29 <Constraints>
30 Equal(v1-v5), Slope;

An examination of the data file (lsat6grp.dat) shows that the data for these
five items have been grouped by response patterns with the last variable in the
file providing the number of observations per pattern. After naming the group
and file name in the <Groups> section as usual, we use the Select statement
to select only the first 5 variables that will be subjected to IRT analysis (i.e.,
we exclude the weighting variable, which was named “w” in the Varnames
statement). Note that this is also the first time that we have encountered
comments in the syntax file. A comment begins with 2 slashes, following the
standard C/C++ convention. They may appear anywhere in the syntax, but
not within a command statement. In addition, one may also use a pair of /*
*/ to create entire blocks of comments that span more than one line, as shown
around Line 23 syntax file.

Returning to the example syntax, we use the CaseWeight command to
identify the variable that contains response pattern frequencies, (i.e., the num-
ber of cases per response pattern). The rest of the <Groups> statements, those
defining number of categories, etc., are as before.

Note that the graded model with 2 categories is specified in the Model
statement, which is equivalent to a 2PL model. To obtain a 1PL model, the
slope/discrimination parameters must be constrained equal across items. To
accomplish this, an equality constraint is specified in the <Constraints> sec-
tion using the Equal statement on the Slope parameters of items v1-v5. The
keywords for other item parameters are Intercept for the location parameter
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in all models, Guessing for the guessing parameter/lower asymptote in the
3PL model, and ScoringFn for the scoring function parameters in the Nomi-
nal Categories model. See the Constraints section of the Details of the Syntax
chapter for additional information on flexMIRTTM constraints.

There are several new commands in the <Options> section. For the goodness-
of-fit indices, the full gamut of available GOF indices (detailed in Chapter 9 of
the manual) are requested by the keyword Complete. The JSI statement re-
quests the Jackknife Slope Index (JSI), an LD detection tool, for all pairs of
items. The HabermanResTbl command requests a table that lists the observed
and expected frequencies and standardized residuals for each response pattern,
as well as the associated SEs, EAPs and SDs. When SX2Tbl is requested, de-
tailed item fit tables will be printed, in addition to the Orlando and Thissen
(2000) S −X2 item fit chi-square statistics. The command FactorLoadings
= Yes; requests the printing of the factor loading values for each item, which
may be converted from the respective slope values (e.g., Takane & de Leeuw,
1987; Wirth & Edwards, 2007). Even though the scores are not saved (SaveSCO
= No;), the scoring method of SSC is specified. As noted previously, the SSC
method will print the requested summed score to EAP scale score conversion
table in the output, although no individual scores are calculated/saved. The
commands introduced in this example add several new parts to the output file,
discussed in the next pages.

The item parameters are printed in their customary order, but note that
the 1PL equal-slope constraint specified in the syntax has been interpreted
correctly, as evidenced by all values in the a column being equal. The factor
loadings are presented below the typical item parameter table, with loadings
appearing in the lambda1 column.

Output 3.15: 1PL Grouped Data Output - Item Parameters and Factor
Loadings

2PL Items for Group 1: Group1
Item Label P# a s.e. P# c s.e. b s.e.

1 v1 6 0.76 0.07 1 2.73 0.13 -3.61 0.32
2 v2 6 0.76 0.07 2 1.00 0.08 -1.32 0.14
3 v3 6 0.76 0.07 3 0.24 0.07 -0.32 0.10
4 v4 6 0.76 0.07 4 1.31 0.08 -1.73 0.17
5 v5 6 0.76 0.07 5 2.10 0.11 -2.78 0.25
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LSAT 6
5 Items 1PL N=1000 Grouped Data

Factor Loadings for Group 1: Group1
Item Label lambda 1 s.e.

1 v1 0.41 0.05
2 v2 0.41 0.05
3 v3 0.41 0.05
4 v4 0.41 0.05
5 v5 0.41 0.05

The next new portion of the output are the values and tables associated
with the summed-score based item fit diagnostic (e.g., Orlando & Thissen,
2000, Cai, 2015), which are printed as a result of the GOF = Complete and
SX2Tbl = Yes; commands, respectively. The S −X2 value and table for the
first item is presented. When the p-value associated with the S −X2 value is
less than the α-level (typically 0.05), the item should be examined for possible
misfit.

Output 3.16: 1PL Grouped Data Output - Item Fit Diagnostics

Orlando-Thissen-Bjorner Summed-Score Based Item Diagnostic Tables and X2s:
Group 1: Group1
Item 1 S-X2(3) = 0.2, p = 0.9809

Category 0 Category 1
Score Observed Expected Observed Expected

0 3 2.4 10 10.6
1 10 9.9 62 62.1
2 23 23.3 212 211.7
3 25 25.5 342 341.5
4 15 14.9 298 298.1

By specifying Score = SSC; in the command file, we requested a summed
score to EAP scale score conversion table be printed, which is shown next.
With a total of 5 items, there are 6 possible summed scores which are listed
in the first column. Going across a row, after the sum score, the EAP score
and the posterior standard deviation associated with that particular summed
score value are presented. The table also includes model-implied and observed
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probabilities for the summed scores, appearing in columns labeled P and O,
respectively. Immediately after the table, the marginal reliability of the scale
scores is printed, as well as the value of a chi-square statistic that provides a
test of the underlying normality of the latent variable distribution.

Output 3.17: 1PL Grouped Data Output - Summed Score to Scale Score
Conversion

Summed Score to Scale Score Conversion Table:
Summed
Score EAP SD P O
0.00 -1.910 0.797 0.0023654 0.0030000
1.00 -1.429 0.800 0.0208898 0.0200000
2.00 -0.941 0.809 0.0885974 0.0850000
3.00 -0.439 0.823 0.2274460 0.2370000
4.00 0.084 0.841 0.3648997 0.3570000
5.00 0.632 0.864 0.2958018 0.2980000

Summed score based latent distribution fit S-D2 = 0.9, p = 0.8166
Marginal reliability of the scaled scores for summed scores = 0.29427

Scrolling further down in the full output file, we encounter sections related
to LD detection. We have previously discussed the Marginal fit and Standard-
ized LD X2 Statistics table, but the matrix immediately below that in the
output is new. The JSI = Yes; statement in the command file produces a
matrix (labeled Edwards-Houts-Cai Jackknife Slope Diagnostic Index) which
provides values for a newly introduced LD detection method (Edwards & Cai,
2011), the calculation of which is described in detail later in the manual.

Output 3.18: 1PL Grouped Data Output - JSI matrix

Edwards-Houts-Cai Jackknife Slope Diagnostic Index for Group 1: Group1
Item 1 2 3 4 5

1 --- -0.08 0.37 -0.17 -0.15
2 0.07 --- 0.37 -0.17 -0.15
3 0.07 -0.08 --- -0.17 -0.15
4 0.07 -0.08 0.37 --- -0.15
5 0.07 -0.08 0.37 -0.17 ---

For now, it is sufficient to know that a value noticeably larger than others in
the matrix indicates an item pair that should be examined for possible LD.
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The last new table is the result of the statement HabermanResTbl=Yes;.
A portion of this table is reproduced below. In this table, observed response
patterns are listed by row. For a given response pattern, the observed and
model-implied frequencies, the standardized residual, EAP score, and standard
deviation associated with the EAP score are printed.

Output 3.19: 1PL Grouped Data Output - Haberman Residual Table

Response Pattern Observed and Expected Frequencies, Standardized
Residuals, EAPs and SDs

Group 1: Group1
Item: Frequencies Standard

1 2 3 4 5 Observed Expected Residual EAP[q |u] SD[q |u]
0 0 0 0 0 3.00 2.37 0.41 -1.91 0.80
0 0 0 0 1 6.00 5.47 0.23 -1.43 0.80
0 0 0 1 0 2.00 2.47 -0.30 -1.43 0.80
0 0 0 1 1 11.00 8.25 0.96 -0.94 0.81
0 0 1 0 0 1.00 0.85 0.16 -1.43 0.80
0 0 1 0 1 1.00 2.84 -1.09 -0.94 0.81
0 0 1 1 0 3.00 1.28 1.51 -0.94 0.81
0 0 1 1 1 4.00 6.22 -0.89 -0.44 0.82
0 1 0 0 0 1.00 1.82 -0.61 -1.43 0.80
0 1 0 0 1 8.00 6.06 0.79 -0.94 0.81
0 1 0 1 1 16.00 13.29 0.75 -0.44 0.82

...
1 0 1 0 0 3.00 5.33 -1.01 -0.94 0.81
1 0 1 0 1 28.00 25.83 0.43 -0.44 0.82
1 0 1 1 0 15.00 11.69 0.97 -0.44 0.82
1 0 1 1 1 80.00 83.30 -0.38 0.08 0.84
1 1 0 0 0 16.00 11.39 1.37 -0.94 0.81
1 1 0 0 1 56.00 55.17 0.12 -0.44 0.82
1 1 0 1 0 21.00 24.96 -0.80 -0.44 0.82
1 1 0 1 1 173.00 177.91 -0.41 0.08 0.84
1 1 1 0 0 11.00 8.59 0.83 -0.44 0.82
1 1 1 0 1 61.00 61.23 -0.03 0.08 0.84
1 1 1 1 0 28.00 27.71 0.06 0.08 0.84
1 1 1 1 1 298.00 295.80 0.15 0.63 0.86
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3.9. The Nominal Categories Model
Our last set of basic examples will give demonstrations of using flexMIRTTM to
fit the reparameterized Nominal Categories model (Thissen, Cai, & Bock, 2010,
Thissen & Cai, 2016). As discussed in both Thissen and Steinberg (1986) and
Thissen et al. (2010), models equivalent to the Partial Credit Model (Masters,
1982), and Muraki’s (1992) Generalized Partial Credit Model, among others,
may be obtained as restricted versions of the full-rank nominal model by the
choice of contrast matrices and constraints.
3.9.1 Nominal Model

The first data set contains responses to items in a quality of life scale. First
reported in Lehman (1988), the data set consists of responses from 586 patients
to 35 items from the classic Quality of Life (QOL) Scale for the Chronically
Mentally Ill. All items have 7 response categories: terrible; unhappy; mostly
dissatisfied; mixed, about equally satisfied and dissatisfied; mostly satisfied;
pleased; and delighted.

Example 3-9: Nominal Model Calibration

1 <Project>
2 Title = "QOL Data";
3 Description = "35 Items - Nominal";
4
5 <Options>
6 Mode = Calibration;
7 Etol = 1e-4;
8 Mtol = 1e-5;
9 Processors = 2;

10
11 <Groups>
12 %Group1%
13 File ="QOL.DAT";
14 Varnames = v1-v35;
15 N = 586;
16 Ncats(v1-v35) = 7;
17 Model(v1-v35) = Nominal(7);
18
19 <Constraints>
20 Fix(v1-v35), ScoringFn(1);
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In the <Groups> section, we have identified the data file, named the variables,
specified the number of response options, and chosen to fit the Nominal model
with 7 categories to the data. In the <Options> section, the convergence cri-
teria for both the E step and M iterations of the EM algorithm have been
adjusted from the default values, by the Etol and Mtol commands, respec-
tively, so that a tightly converged solution can be obtained.

Because the Nominal Categories model estimates parameters that differ
from the models previously discussed, excerpts from the item parameter tables
will be presented from the output and briefly discussed.
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The first 3 tables in Output 2.16 provide parameter estimates using the
reparameterized version of the model (see Thissen et al., 2010). In the first ta-
ble, the overall slope value, labeled a, the type of α contrast matrix (Ta) used,
and the estimated contrast values, labeled alpha 1 – alpha 3, are reported.
There are 7 categories so there are 6 scoring function contrasts. The second
table, labeled Nominal Model Scoring Function Values reports the scoring
function values for the categories, which are calculated as Taα, where α are
the estimated scoring contrasts. The third table of item parameters reports
the type of contrast matrix used for the intercepts (Tc) and the estimated γ
parameters. For convenience, the final item parameter table of the output
presented also reports the estimates in Bock’s original parameterization.

The next example employs a set of data regarding numerical knowledge
from pre-school aged children, most notably analyzed in Thissen and Stein-
berg (1988) to illustrate the concept of testlets. As described by Thissen and
Steinberg (1988), the data were collected from 4 tasks that involved asking 592
young children to identify the numerals representing the quantities of 3 and
4 and, separately, match the numeral for each number to a correct quantity
of blocks. From these items, called Identify3, Identify4, Match3, and Match4,
pseudo-items were created that summarized a child’s performance on both
numbers. For the new pseudo-items, Identify and Match, the response options
are 0 (child could do the requested action for neither number), 3 (child could
identify/match 3 only), 4 (child could identify/match 4 only), and 34 (child
could identify/match both 3 and 4 successfully). We will again fit the Nominal
Model, but with some additional constraints imposed.

Example 3-10: Nominal Model Calibration 2

1 <Project>
2 Title = "Pre-School Numerical Knowledge";
3 Description= "2 Redefined Items Nominal";
4
5 <Options>
6 Mode = Calibration;
7 SE = SEM;
8 Etol = 5e-5;
9 Mtol = 1e-9;

10 GOF = Extended;
11 M2 = Full;
12 HabermanResTbl = Yes;
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13 SX2Tbl = Yes;
14 FitNullModel = Yes;
15 SavePRM = Yes;
16
17 <Groups>
18 %Group1%
19 File ="PreschoolNum.dat";
20 Varnames = Identify,Match,Identify3,Identify4,Match3,Match4;
21 Select= Identify, Match;
22 N = 592;
23 Ncats(Identify,Match) = 4;
24 Codel(Identify,Match) = (0,3,4,34),(0,1,2,3);
25 Model(Identify,Match) = Nominal(4);
26 Ta(Identify,Match) = Identity;
27 Tc(Identify,Match) = Identity;
28
29 <Constraints>
30 Fix(Identify), ScoringFn(2);
31 Equal Group1, (Match), ScoringFn(2): Group1, (Match), ScoringFn(3);
32 Equal Group1, (Match), Intercept(1): Group1, (Match), Intercept(2);
33

Within the <Options> section, there are several new commands. The
method of standard error calculation has been changed from the default of
empirical cross-product approximation (Xpd) to Supplemented EM algorithm
(keyword is SEM; see Cai, 2008). We have also requested the full version of the
limited information GOF M2 statistic (Cai & Hansen, 2013; Maydeu-Olivares
& Joe, 2005) and, additionally, specified that the zero-factor Null Model should
be estimated and the associated incremental GOF indices be printed.

In the <Groups> section, we have identified the data file, named the vari-
ables, selected only the pseudo-items to retain for analysis, specified the num-
ber of response options, recoded the response options into zero-based sequen-
tial (but nevertheless nominal) codes, and chosen to fit the Nominal model
with 4 categories to the data. The statements Ta and Tc are specific to the
nominal model and refer to the contrast matrices for the scoring function and
intercept parameters, respectively. The options for the scoring function and
intercept contrasts include a Trend matrix (which uses a Fourier basis, aug-
mented with a linear column; see Thissen et al., 2010), an Identity matrix, or
a user-supplied matrix. In this example, both of the contrast matrices have
been set to type Identity to facilitate equality constraints.

Within the <Constraints> section, we encounter a more complicated set of
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constraints than in the previous example. Substantively, these constraints are
applied to the scoring functions and intercepts so that the solution matches
with Thissen and Steinberg’s (1988) preferred testlet solution. In terms of
flexMIRTTM coding, we do encounter something new in the Equal statements.

In both Equal statements, rather than setting a group of similar parameters
across items (such as the slopes across items in the previous 1PL example)
equal to another, we are selecting specific parameters to impose the equality
constraint upon. Because of this, the form of the Equal statement is slightly
more complex; because we are specifying different parameters we will need to
use a multi-part statement where each part will exactly specify parameters.
First, the type of constraint to be applied (Equal in this case) is listed and
then syntax to identify the first parameter(s) to which the constraint will
be applied is provided. We do this by listing the group name, followed by a
comma, and then the item(s) which are to be affected by the constraint are then
specified in parentheses, followed by another comma, and then the keyword
for the specific parameter that is affected (slope, intercept, etc.), followed by
a numeric indicator in paranetheses for the exact parameter. In the current
example, the first Equal statement is specifying the second scoring function
of item "Match" in "Group1". The colon indicates the end of the first part of
the constraint and we will then specifiy the second parameter to be included
in our equality (in our example, the third scoring function of item "Match"
in "Group1"), using similar statements and ordering, after the colon. This
formatting of constraints may have as many parts as is necessary (that is, it is
not limited to only two parameters that can be set equal to one another), and
can also be used to impose cross-group constraints (as will be demonstrated
in later multiple-group examples.

Estimated item parameters from the current model are presented in Output
3.21.
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Although several new command statements were introduced in this ex-
ample, only two result in additions to the output file. Both the M2 and
FitNullModel statements provide additional GOF information that is printed
near the bottom of the output file, with the other overall GOF index values.
The fitted model’s −2×log-likelihood, AIC, and BIC are printed as before,
but additional fit statistics for the zero-factor null model are also included
under the corresponding fitted model section. The estimation of the inde-
pendence model permits the calculation of the non-normed fit index (NNFI;
aka Tucker-Lewis Index). The usual full-information fit statistics are printed,
but limited-information statistics, based on M2, for the fitted and zero-factor
model are also given. Taken together, the fit index values indicate that the
nominal model provides excellent fit to this data.

Output 3.22: Nominal Model 2 Output - GOF values

Statistics based on the loglikelihood of the fitted model
-2loglikelihood: 2766.69

Akaike Information Criterion (AIC): 2784.69
Bayesian Information Criterion (BIC): 2824.14

Statistics based on the loglikelihood of the zero-factor null model
-2loglikelihood: 2885.67

Akaike Information Criterion (AIC): 2895.67
Bayesian Information Criterion (BIC): 2917.58

Full-information fit statistics of the fitted model
Degrees

G2 of freedom Probability F0hat RMSEA
8.45 6 0.2064 0.0143 0.03

Degrees
X2 of freedom Probability F0hat RMSEA

8.99 6 0.1739 0.0152 0.03

Full-information fit statistics of the zero-factor null model
Degrees

G2 of freedom Probability F0hat RMSEA
127.43 10 0.0001 0.2153 0.14

Degrees
X2 of freedom Probability F0hat RMSEA

124.58 10 0.0001 0.2104 0.14
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With the zero-factor null model, Tucker-Lewis (non-normed) fit index
based on G2 is 0.97

With the zero-factor null model, Tucker-Lewis (non-normed) fit index
based on X2 is 0.96

Limited-information fit statistics of the fitted model:
Degrees

M2 of freedom Probability F0hat RMSEA
8.24 6 0.2207 0.0139 0.03

Note: M2 is based on full marginal tables.
Note: Model-based weight matrix is used.

Limited-information fit statistics of the zero-factor null model:
Degrees

M2 of freedom Probability F0hat RMSEA
124.58 10 0.0001 0.2104 0.14

Note: M2 is based on full marginal tables.
Note: Model-based weight matrix is used.

With the zero-factor null model, Tucker-Lewis (non-normed) fit index
based on M2 is 0.97

3.9.2 Generalized Partial Credit Model

We return to the QOL data again to illustrate Muraki’s (1992) Generalized
Partial Credit (GPC) model. The GPC model is a constrained special case
of the nominal model. To set up a GPC model using the reparameterized
nominal model, one fixes all scoring function contrasts. This results in the
first scoring function contrast being fixed to 1.0 and the other contrasts fixed
to 0.0. With such constraints in place, the category scoring function values
are equal to 0, 1, . . . , k, which is the necessary structure for fitting the GPC.
Because the GPC is such a popular special case of the nominal model we have
added GPC() as an option to the Model()= ; statement. This option will
automatically fix the scoring functions as needed, freeing the user from making
such technical specifications. The following syntax demonstrates the use of
this model keyword. As with the Graded model specification, when one uses
the GPC() keyword in the Model statement, the model name is immediately
followed by the number of categories in parentheses.
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Example 3-11: Generalized Partial Credit Model

1 <Project>
2 Title = "QOL Data";
3 Description= "35 Items - GPC";
4
5 <Options>
6 Mode = Calibration;
7 Etol = 1e-4;
8 Mtol = 1e-5;
9 Processors = 2;

10
11 <Groups>
12 %Group1%
13 File = "QOL.DAT";
14 Varnames = v1-v35;
15 N=586;
16 Ncats(v1-v35) = 7;
17 Model(v1-v35) = GPC(7);
18
19 <Constraints>

3.9.3 Rating Scale Model

Andrich’s (1978) Rating Scale (RS) model may also be obtained as a spe-
cial case of the reparameterized nominal model. To obtain the RS model in
flexMIRTTM it is necessary to fix the scoring functions for all items. Addi-
tionally, we need to constrain the slopes for all items to be equal, as well as
set each intercept to be equal across the items. This is all accomplished via
the constraints imposed in Example 3-12.

Example 3-12: Rating Scale Model with Trend Contrasts

1 <Project>
2 Title = "QOL Data";
3 Description= "35 Items RS Using Default Trend Contrasts";
4
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5 <Options>
6 Mode = Calibration;
7 SE = SEM;
8
9 <Groups>

10 %Group1%
11 File = "QOL.DAT";
12 Varnames = v1-v35;
13 N = 586;
14 Ncats(v1-v35) = 7;
15 Model(v1-v35) = Nominal(7);
16
17 <Constraints>
18 Fix(v1-v35), ScoringFn;
19 Equal(v1-v35),Slope;
20 Equal(v1-v35),Intercept(2);
21 Equal(v1-v35),Intercept(3);
22 Equal(v1-v35),Intercept(4);
23 Equal(v1-v35),Intercept(5);
24 Equal(v1-v35),Intercept(6);

The just-presented RS fitting used the flexMIRTTM default trend con-
trasts. To obtain results for the RS model similar to those that would be
produced by Multilog, the user may provide flexMIRTTM with the triangle
contrasts utilized by Multilog. This is done through the Tc command and,
rather than using one of the available keywords, supplying the values that
compose the desired contrast. The triangle contrast is shown in the Tc state-
ment in the following example syntax.

Example 3-13: Rating Scale Model with Triangle Contrasts

1 <Project>
2 Title = "QOL Data";
3 Description= "35 Items RS Multi-log style Triangle Contrasts";
4
5 <Options>
6 Mode = Calibration;
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7 SE = SEM;
8
9 <Groups>

10 %Group1%
11 File = "QOL.DAT";
12 Varnames = v1-v35;
13 N = 586;
14 Ncats(v1-v35) = 7;
15 Model(v1-v35) = Nominal(7);
16 Tc(v1-v35) = (
17 0 0 0 0 0 0,
18 -1 -1 0 0 0 0,
19 -2 -1 -1 0 0 0,
20 -3 -1 -1 -1 0 0,
21 -4 -1 -1 -1 -1 0,
22 -5 -1 -1 -1 -1 -1,
23 -6 0 0 0 0 0 );
24
25 <Constraints>
26 Fix(v1-v35),ScoringFn;
27 Equal(v1-v35),Slope;
28 Equal(v1-v35),Intercept(2);
29 Equal(v1-v35),Intercept(3);
30 Equal(v1-v35),Intercept(4);
31 Equal(v1-v35),Intercept(5);
32 Equal(v1-v35),Intercept(6);

Thus far, we have covered how to use flexMIRTTM to calibrate several
of the most commonly used single-group unidimensional IRT models, and to
obtain IRT scale scores. While these types of models are useful, the great-
est strength of flexMIRTTM is its ability to readily handle complex models
(e.g., multidimensional, bifactor, testlet, etc.) and more complex data struc-
tures, such as multilevel data. In the next chapter, we will provide instruction
and examples, building intuitively from the basic syntax already presented,
to demonstrate how flexMIRTTM syntax files are constructed to handle more
complex models and data structures.
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CHAPTER 4

Advanced Modeling

The previous chapter focused on basic unidimensional, single group models to
introduce the flexMIRTTM syntax, output, and available IRT models. While
these examples are useful in their own right, it is expected that a user work-
ing with real-world data will need more advanced modeling options. In this
chapter, we will provide examples for using flexMIRTTM when multiple groups,
non-normal theta distributions, or hierarchical data structures need to be mod-
eled.

4.1. Multiple Group Calibration
The data set used to illustrate 2PL and 3PL examples in the previous chapter
is actually made up of responses from two groups of examinees, 3rd and 4th
graders. Using this already familiar data set, we will demonstrate a multiple
group analysis.

Example 4-1: 2-Group 3PL Using Normal Group Parameters and Guessing
Prior with EAP Scoring

1 <Project>
2 Title = "G341-19";
3 Description= "12 Items 3PL 2 Groups
4 Calibration with Normal Prior, Saving Parameter Estimates,
5 Followed by Combined Scoring Run for EAP Scores";
6
7 <Options>
8 Mode = Calibration;
9 Progress = Yes;

10 SaveSCO = Yes;
11 Score = EAP;
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12 SavePRM = Yes;
13 SaveINF = Yes;
14 FisherInf = 81,4.0;
15 SE = Xpd;
16 GOF = Extended;
17 M2 = Full;
18 FitNullModel = Yes;
19
20 <Groups>
21 %Grade4%
22 File ="g341-19.grp1.dat";
23 Varnames = v1-v12;
24 N=1314;
25 Ncats(v1-v12) = 2;
26 Model(v1-v12) = ThreePL;
27 BetaPriors(v1-v12) = 1.5;
28
29 %Grade3%
30 File ="g341-19.grp2.dat";
31 Varnames = v1-v12;
32 N=1530;
33 Ncats(v1-v12) = 2;
34 Model(v1-v12) = ThreePL;
35 BetaPriors(v1-v12) = 1.5;
36
37 <Constraints>
38 Free Grade3, Mean(1);
39 Free Grade3, Cov(1,1);
40 Equal Grade3, (v1-v12), Guessing:
41 Grade4, (v1-v12), Guessing;
42 Equal Grade3, (v1-v12), Intercept:
43 Grade4, (v1-v12), Intercept;
44 Equal Grade3, (v1-v12), Slope:
45 Grade4, (v1-v12), Slope;
46 Prior Grade3, (v1-v12), Guessing : Beta(1.0,4.0);

Two groups (%Grade4% and %Grade3%) are specified in the <Groups> sec-
tion. An important point to highlight is that the data for each group should
be stored as individual files. To that end, “g341-19.dat” is split into 2 new
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files “g341-19.grp1.dat” and “g341-19.grp2.dat”. As may be seen in the N =
statements for each group, the original sample size of 2844 is now divided be-
tween the two groups. Within each group the basic specification statements
(VarNames, Ncats, etc.) remain the same. There are simply now two sets of
them, one per group. A new option not specific to multiple group analysis, is
BetaPriors. This statement imposes a prior on the item uniquenesses in the
form of a Beta(α,1.0) distribution with a user-specified α parameter, in this
case α = 1.5 (see Bock, Gibbons, & Muraki, 1988).

Within the <Constraints> section, we are allowing the mean and variance
of the second group (Grade3) to be estimated by freeing those parameters via
the first two constraint statements. Additionally, we have specified a model
that assumes measurement invariance by constraining the item parameters to
be equal across the two groups. Finally, we supplied a prior for the guessing
parameters in the form of the beta distribution.

There are new commands encountered in the <Options> section as well.
It should be noted that these newly encountered commands are not specific
in any way to the multi-group format and are available for use with single
group analyses as well. For instance, the Progress statement (via Yes/No
keywords) determines whether flexMIRTTM will print progress updates in the
console window. Using SaveINF = Yes;, we requested that the Fisher infor-
mation function for the items and the total scale be saved to an external file
and specified, via FisherInf = 81,4.0; command, that we would like infor-
mation values calculated at 81 points, equally spaced from -4.0 to 4.0. The
method of standard error calculation has been specified as empirical cross-
products approximation, using SE = Xpd (all possible SE calculation methods
and corresponding keywords are covered in the Details of the Syntax chapter).
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4.2. Characterizing Non-Normal Population Distributions
This example is substantially the same as the analysis just discussed, with an
additional option included in the <Groups> section. As the command file does
not change drastically, only the modified sections are presented here. The full
syntax file (g341-19.calib.EH.flexmirt) is available in the examples provided
on the flexMIRTTM website.

Example 4-2: 2-Group 3PL with Empirical Histogram (Excerpts)

8 <Options>
...

19 Etol = 5e-4;
20
21 <Groups>
22 %Grade4%
23 File ="g341-19.grp1.dat";
24 Varnames = v1-v12;
25 N= 1314;
26 Ncats(v1-v12) = 2;
27 Model(v1-v12) = ThreePL;
28 BetaPriors(v1-v12) = 1.5;
29 EmpHist = Yes;
30 %Grade3%
31 File ="g341-19.grp2.dat";
32 Varnames = v1-v12;
33 N= 1530;
34 Ncats(v1-v12) = 2;
35 Model(v1-v12) = ThreePL;
36 BetaPriors(v1-v12) = 1.5;
37 EmpHist = Yes;

...

The primary point of interest here is the EmpHist = Yes; statement found
as the last command provided for each group. With this option invoked,
flexMIRTTM will estimate the item parameters and the shape of the popu-
lation (theta) distribution simultaneously. The latent variable distribution is
estimated as an empirical histogram (e.g., Mislevy, 1984; Woods, 2007). By
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“empirical histogram” we mean the normalized accumulated posterior densi-
ties for all response patterns at each quadrature node - that is, an empirical
characterization of the shape of the examinee ability distribution in the popu-
lation. The use of an empirical histogram is in contrast to a typical calibration
run in which the latent trait is assumed to be normally distributed. This esti-
mation method is currently only available for single-level unidimensional and
single-level bifactor (or testlet response models) with one general dimension.
In the <Options> section, the convergence criterion for the E step of the EM
algorithm has been increased from the default of 1e-4 to 5e-4 to accommodate
the added uncertainty due to the estimation of the empirical histogram prior.

4.3. Multiple Group Scoring Only
Scoring runs with multiple groups proceed in much the same way as the single
group scoring analyses. The current scoring example makes uses of the item
parameters obtained from the first multiple group example (Example 3.1 which
employed normal priors). The syntax is presented below and, as with the single
group scoring syntax, in the <Options> section Mode is set to Scoring, the
type of scores requested is specified (MAPs in this case) and the file containing
the relevant item parameters (generated by our previous calibration run) is
given using the ReadPRMFile statement. Because of the distinct groups, two
sets of data descriptor statements (e.g., syntax for declaring group label, data
file name, variable names, and sample size) are given. This example is very
similar to the single group scoring runs, no further discussion is provided. For
explications of any of the included syntax statements, the user should refer to
a previous single-group example (e.g., Example 2.3).

Example 4-3: 2-Group 3PL MAP Scoring from Parameter Estimates

1 <Project>
2 Title = "G341-19";
3 Description= "12 Items 3PL 2 Groups MAP
4 from Parameter Estimates";
5
6 <Options>
7 Mode = Scoring;
8 ReadPRMFile= "g341-19.calib.normal-prm.txt";
9 Score =MAP;
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10
11 <Groups>
12 %Grade4%
13 File ="g341-19.grp1.dat";
14 Varnames = v1-v12;
15 N = 1314;
16 %Grade3%
17 File ="g341-19.grp2.dat";
18 Varnames = v1-v12;
19 N = 1530;
20 <Constraints>

In some situations, it may be useful to obtain the sum score conversion
table, without actually having to score data. For example, when only the
SSC table is wanted and the sample size is large enough that calculating
scores for every individual would take a non-trivial amount of computing time,
flexMIRTTM is able to by-pass individual scoring and produce only the nec-
essary table. The syntax to do so is straight-forward and presented below.

Example 4-4: 2-Group 3PL Summed Score to EAP Conversion Table

1 <Project>
2 Title = "G341-19";
3 Description= "12 Items 3PL 2 Groups Summed Score to EAP from
4 Parameter Estimates Using Estimated Empirical Histogram Prior
5 Make Table Only";
6
7 <Options>
8 Mode = Scoring;
9 ReadPRMFile = "g341-19.calib.EH-prm.txt";

10 Score = SSC;
11 Quadrature = (81,4.0);
12
13 <Groups>
14 %Grade4%
15 Varnames = v1-v12;
16 EmpHist = Yes;
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17
18 %Grade3%
19 Varnames = v1-v12;
20 EmpHist = Yes;
21
22 <Constraints>

Just as in a typical scoring run, we have specified the parameter file (now
using parameters obtained from the multiple-group calibration which esti-
mated theta via an empirical histogram). Because we are using the empirical
histogram parameter file, we must also supply a Quadrature command that
matches the number and range of points used to originally estimate theta em-
pirically. We have set the scoring method to produce the desired SSC (Summed
Score to EAP Conversion) table. In the <Groups> section, we still provide la-
bels and variable names for both groups as well as the EmpHist = Yes; state-
ment to use the empirical histogram-estimated theta values in scoring, but the
sample size and data file names are omitted because they are not needed for
producing the conversion table without scoring any individuals.

4.4. DIF Analyses
Up to this point, the multiple group examples have assumed the invariance of
item parameters across groups. However, when multiple groups are involved
it is generally prudent to check that assumption by looking for differential
item functioning (DIF) between groups. flexMIRTTM provides two general
methods for DIF testing: 1) a DIF sweep for all items, and 2) a more focused
examination, where candidate DIF items are tested with designated anchor
items. Both methods utilize the improved Wald test (e.g., Langer, 2008). The
DIF sweep procedure, which readers may be less familiar with, is detailed
extensively in Woods, Cai, and Wang (2013). The DIF examples will again
use the end-of-grade testing data. As the syntax is quite similar to what was
presented earlier, only the changes will be noted in the excerpt. The full syntax
file may be found in the corresponding folder on the flexMIRTTM support page.
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Example 4-5: DIF: Test All Items (Excerpts)

...
6 <Options>

...
10 DIF = TestAll;
11 DIFcontrasts = (1.0 -1.0);

...
31 <Constraints>

...
38 Prior Grade3, (v1-v12), Guessing: Normal(-1.1,0.5);
39 Prior Grade4, (v1-v12), Guessing: Normal(-1.1,0.5);

First, in conjunction with the use of the 3PL model, a logit-normal prior
is applied in both groups to the guessing parameters, which was a previously
unseen option. With respect to the DIF analysis, the relevant new statements
are contained in the <Options> section. To enable the general DIF sweep,
testing all items, DIF = TestAll; is specified. Also required when testing for
DIF are values that supply flexMIRTTM with the entries for a DIF contrast
matrix, specifying how contrasts among groups should be constructed. In this
example, we are conducting a straight-forward comparison of Grade3 against
Grade4, so the statement appears as, DIFcontrasts = (1.0 -1.0); with
spaces between the supplied values for each contrast. When k groups are
present, k − 1 contrasts must be specified, (e.g., for 3 groups, DIFcontrasts
= (2.0 -1.0 -1.0, 0.0 1.0 -1.0);, with commas in between). Because
the syntax file is free-form, the contrasts may appear on more than one line.
For example,

DIFcontrasts = (
2.0 -1.0 -1.0,
0.0 1.0 -1.0
);

is entirely permissible. The above contrasts specify that, for the first compar-
ison, group 1 is compared against the mean of groups 2 and 3 and, for the
second contrast, that group 2 is compared against group 3. Users may find a
review of contrasts within the context of post-hoc ANOVA analyses useful for
conceptualizing the DIF contrasts supplied to flexMIRTTM.
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From the DIF analysis, an additional table is reported in the output, which
we present on the next page. For each item that is present in both groups,
a line in the table is added that reports the various Wald tests for that item.
As we fit the 3PL to the items, we are provided with an overall test for DIF,
a test of DIF with respect to the guessing parameter (labeled X2g), a test of
the slope, assuming g is fixed across groups (labeled X2a|g), and a test of
the intercept, assuming a and g are fixed across groups. Each of the reported
Wald values also has the associated degrees of freedom and p-value printed.

Users are strongly encouraged to consult Woods et al. (2013) prior to using
the DIF = TestAll command, as this paper provides a detailed description
of the automated process being used. For example, the TestAll procedure
expects that the model specified in the syntax has all item parameters fixed
across groups and focal group parameters (mean(s) and variance(s)) freed;
deviations from this may result in unexpected DIF results. Further, a review
of the noted paper will reveal that the authors found the Wald-2 procedure,
implemented via DIF = TestAll; in flexMIRTTM, tends to result in inflated
Type I error rates and suggested that this procedure may be best used for
identifying anchors for a subsequent DIF analysis that examines only candidate
items for DIF, rather than as a final DIF analysis from which conclusions
regarding item functioning are drawn. Additionally, it is also recommended
that when using the TestAll DIF sweep option that the standard error method
be changed from the default. Conclusions reported in Woods et al. (2013) were
based on the use of supplemented EM SEs (SE = SEM;). Users should also
be aware that the automated process implemented via the TestAll command
is only appropriate for use with unidimensional models; attempts to use this
automated procedure with a MIRT model will result in an unidentified model
and spurious results. However, the two-step process described in Woods et
al. (2013) can be manually programmed by users wishing to conduct a DIF
sweep in a MIRT model (in which the two-step procedure is completed via two
separate syntax files).
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flexMIRTTM may also be used for more traditional DIF testing, estimating
candidate DIF items relative to designated anchor items. Only relevant ex-
cerpts of the command file, “g341-19.difcand.flexmirt”, are presented. Again,
the full file is available on the support page.

Example 4-6: DIF: Test Candidate Items (Excerpts)

6 <Options>
...

10 DIF = TestCandidates;
11 DIFcontrasts = (1.0 -1.0);
12
13 <Groups>
15 %Grade4%
16 File ="g341-19.grp1.dat";
17 Varnames = v1-v12;
18 N = 1314;
19 Ncats(v1-v12) = 2;
20 Model(v1-v12) = ThreePL;
21 DIFitems = v1,v2;
22 %Grade3%
23 File ="g341-19.grp2.dat";
24 Varnames = v1-v12;
25 N = 1530;
26 Ncats(v1-v12) = 2;
27 Model(v1-v12) = ThreePL;
28 DIFitems = v1, v2;
29
30 <Constraints>
31 Free Grade3, Mean(1);
32 Free Grade3, Cov(1,1);
33 Equal Grade3, (v3-v12), Guessing:
34 Grade4, (v3-v12), Guessing;
35 Equal Grade3, (v3-v12), Intercept:
36 Grade4, (v3-v12), Intercept;
37 Equal Grade3, (v3-v12), Slope:
38 Grade4, (v3-v12), Slope;

...
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The keyword used with the DIF statement is now TestCandidates, as
opposed to TestAll in the previous example. The DIFcontrasts statement
remains unchanged. To specify candidate DIF items, within the <Groups> sec-
tion, we simply list the candidate item names using the DIFitems statement,
found as the last entry within each group subsection of the excerpted code.
Here, we are testing Items v1 and v2 for possible DIF. As can be seen in the
<Constraints> section, the item parameters for the anchor items (v3-v12)
are set equal across groups. The DIF table printed in the output is structured
as in the previous example and will not be covered here.

4.5. Multiple Group Multilevel Model
Our next multiple group example will cover the flexMIRTTM syntax options
for handling nested data. Using the student cognitive outcomes data from the
2000 Program for International Student Assessment (see Adams & Wu, 2002),
31 mathematics items with mixed formats (multiple choice and constructed
response) from students in both the United States and Ireland will be analyzed.
The US data set is comprised of 2115 students, representing 152 different
schools, and the Irish data set has 2125 student observations, coming from
139 different schools. From the general description of the data, it is clear
that the complete set of data for this example has two groups (US and Irish
students) and within each country, students (level-1 units) are nested within
schools (level-2 units). The 31 items will be fit with a unidimensional model
at each level (students and schools) within each group (country). Because
the full command file (PISA00mathL2.flexmirt) is quite long, only commands
relevant to multilevel aspect of the analysis will be highlighted.

Example 4-7: Multiple Group Multilevel Model (Excerpts)

13 <Groups>
14 %USA%
15 File ="PISA00Math.US.dat";
16 Missing = 9;
17 Varnames = SchID,StdID,
18 ViewRoomQ1, BricksQ1,
...

27 CarpenterQ01, PipelinesQ1;
28 Select = ViewRoomQ1, BricksQ1,
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...
34 CarpenterQ01,PipelinesQ1;
35 CaseID = StdID;
36 Cluster = SchID;
37 Dimensions = 2;
38 Between = 1;
39 N = 2115;
...

65 %Ireland%
66 File ="PISA00Math.IE.dat";
...

87 CaseID = StdID;
88 Cluster = SchID;
89 Dimensions = 2;
90 Between = 1;
91 N = 2125;
...

117 <Constraints>
...

170 Free USA, Cov(1,1);
171 Free Ireland, Mean(1);
172 Free Ireland, Cov(1,1);

The data files are specified as usual within each group. We have also
set a missing data code using Missing = 9;, so all 9s in the data set will
be interpreted as missing values, rather than the default missing value of -9.
The variables are named in the typical fashion - the first two variables are
of note because they indicate student ID numbers and school ID numbers,
respectively, and will not be selected for IRT analysis. In general, a multilevel
analysis has two kinds of latent dimensions, Between andWithin. The Between
dimensions, used for modeling level-2 (schools, in this case), will always precede
the Within dimensions, used for modeling level-1 (students, in this example)
when flexMIRTTM is assigning dimensions. For this example, there are only
two dimensions total so we specify the total number of dimensions to be used
for the model (via Dimensions = 2;) and also denote that at level-2 there is
one between-school dimension (Between = 1;). Considering the total number
of dimensions is two, this implies that there is one within-school dimension
at the student level. In the estimation and output, flexMIRTTM will use the
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first dimension for between-school variations and the second dimension for
within-school variations among students.

When a 2-level model has been requested, it is required that a variable
defining the higher-level units be specified via the Cluster statement. In the
syntax, we also provide a variable that identifies the first level data (individ-
uals) with the CaseID statement. The latter can be convenient if the individ-
ual IDs are unique so that the scale scores computed by flexMIRTTM can be
merged with other data sets for further analysis.

The <Constraints> section contains extensive statements for setting up
the necessary priors and equality constraints both within and across the two
groups so that the desired hierarchical model is estimated. With the between-
group equality constraints, the item parameters (for both level-1 and level-2
models) are set equal across the two countries, thereby creating anchoring
so that the mean of Ireland schools can be freely estimated. The within-
group equality constraints are specified so that the item slopes for the within
dimension are equal to those for the between dimension. This implies that
a random-intercept only model is fitted in each country, which permits the
decomposition of between-school versus within-school variance.

Output 4.2: Two-Level Model - Means and Variances

Summary of the Data and Dimensions
Group USA Ireland

Missing data code 9 9
Number of Items 31 31

Number of L-2 units 152 139
Number of L-1 units 2115 2125
# Latent Dimensions 2 2
Between Dimensions 1 1
Within Dimensions 1 1

...
Group Latent Variable Means:

Group Label P# mu 1 s.e. P# mu 2 s.e.
1 USA 0.00 ---- 0.00 ----
2 Ireland 79 0.36 0.04 0.00 ----

Latent Variable Variance-Covariance Matrix for Group 1: USA
P# Theta 1 s.e. P# Theta 2 s.e.
78 0.52 0.07

0.00 ---- 1.00 ----

Latent Variable Variance-Covariance Matrix for Group 2: Ireland
P# Theta 1 s.e. P# Theta 2 s.e.
80 0.11 0.02

0.00 ---- 1.00 ----
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We can see from the provided output that the summary of data shows
the multilevel syntax has been correctly interpreted. On average, the overall
school-level achievement in Ireland is 0.36 standard deviations higher than that
of the US. The more interesting result, however, is in the variance decomposi-
tions. In the US, with a fixed within-school variance of 1.0 (for identification),
the between-school variance is estimated as 0.52. This implies an intra-class
correlation of 0.52/(1 + 0.52) = 0.34, showing a significant amount of school
level variation among scores in the US. On the other hand, the intra-class
correlation for Ireland is equal to 0.11/(1 + 0.11) = 0.10, which implies that
the school achievement-levels are much more homogeneous.

While the multilevel examples just discussed included two dimensions, tech-
nically making them multidimensional IRT (MIRT) models, they are multi-
dimensional in a very specific way and actually undimensional at each of the
two levels of analysis. In the next chapter, we cover MIRT models that exhibit
more complex factor patterns, making the models multidimensional in a more
dimensionally significant way.
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CHAPTER 5

Multidimensional IRT

Although the previous chapter contained examples that were multidimen-
sional, estimating two factors, they were also dealing with nested/hierarchical
data. In the noted examples, the fitting of a multidimensional model was
somewhat conflated with the multilevel modeling syntax so, in this chapter,
we provide more straight-forward multidimensional examples.

5.1. Exploratory Factor Analysis with Analytic Rotation
The QOL dataset was introduced in Chapter 2, but a previously unmentioned
aspect of the scale is it was designed to assess both the overall quality of life
as well as the quality of life in 7 more specific subdomains (family, money,
health, leisure, living, safety, and social), with each subdomain containing 4 to
6 items. Item 1 is a global quality of life item. We will be fitting a four factor
EFA model to a subset of the items from the previously introduced QOL scale
(items from the family, money, health, and leisure factors) and allowing the
latent factors to correlate.
5.1.1 EFA with “Blind” Rotation

Example 5-1: EFA with Oblique CF-Quartimax Rotation

1 <Project>
2 Title = "QOL Data";
3 Description= "Items 2-21 - 4 Correlated Factors EFA";
4
5 <Options>
6 Mode = Calibration;
7 Quadrature = 21, 5.0;
8 Processors = 2;
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9 Etol = 1e-3;
10 NewThreadModel = Yes;
11 FactorLoadings = Yes;
12
13 <Groups>
14 %Group1%
15 File ="QOL.DAT";
16 Varnames = v1-v35;
17 Select= v2-v21;
18 Ncats(v2-v21) = 7;
19 Model(v2-v21) = Graded(7);
20 BetaPriors(v2-v21) = 1.5;
21
22 Dimensions = 4;
23 // Rotation options are: None/CFquartimax/CFvarimax/Target;
24 Rotation = CFQuartimax;
25 Oblique = Yes;
26
27 <Constraints>

In the <Options> section, the Quadrature command is encountered for the
first time. This statement allows the user to specify the number of quadra-
ture points to be used, 21 in this case, and the range over which those points
should be spread (from -5.0 to 5.0 here). Reducing the number of quadra-
ture points from the default value (49 points per dimension) may be necessary
when fitting multidimensional models (exploratory and confirmatory) because
the total number of points used is exponentially related to the number of di-
mensions. With higher dimensional models, the total number of quadrature
points (and therefore processing time) may become unwieldy if the default
value is maintained. Users attempting to run these examples for them-
selves should be aware that even with reduced quadrature points and
spread, the EFA examples still take a considerable amount of time
to complete. In extreme cases, flexMIRTTM may use all available memory
attempting to perform the quadrature calculations and be forced to abandon
the analysis. If users encounter such a situation with a MIRT model, in which
flexMIRTTM reports a finishing time but no output pane is opened, reduc-
ing the number of quadrature points may resolve the issue. Another possible
solution is to run the model using the Metropolis-Hastings Robbins-Monro
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(MH-RM) algorithm (see Chapter 5 for MH-RM details).
Also in the <Options> section, we have allowed flexMIRTTM access to 2

processors, rather than the default of 1, to improve the speed of the anal-
ysis and have also specified NewThreadModel= Yes; which calls an updated
implementation of multi-core processing that may be more efficient for high-
dimensional models with a large number of quadrature points. Additionally,
we have requested that flexMIRTTM provide factor loadings for each item, in
addition to the standard IRT parameters.

In the <Groups>, the first several statements, specifying a datafile, selecting
items, and specifying item models, etc., are similar to previous examples. We
have included the BetaPriors command for all items in this example to help
prevent Heywood cases in our EFA model. Specific to the multidimensional
aspect of the current model, we find the Dimensions statement, which in most
previous examples had been left at its default value of 1 and not explicitly
stated. The selected items to be submitted for analysis are, substantively,
related to the four factors of family, money, health, and leisure factors; thus,
we have specified that our model should have 4 factors. Specific to the EFA
that we want to conduct, the next command is related to the type of rotation
we would like performed after the initial extraction. Rotation is the keyword
that indicates to flexMIRTTM that an EFA is desired - to trigger an EFA
run, a rotation other than Rotation = None; must be specified. All available
rotations are covered in the Details of the Syntax chapter - for this example, we
have selected the Crawford-Ferguson (CF) Quartimax rotation (e.g., Browne,
2001). Further, by setting Oblique = Yes; we have specified that the rotated
factors should be allowed to correlate. If the Oblique statement were set to
No, then the resulting rotated factors would be uncorrelated (orthogonal).

Output 5.1: EFA Output - Slope parameters for an unrotated solution

Item Label P# a 1 s.e. P# a 2 s.e. P# a 3 s.e. P# a 4 s.e.
1 v2 7 2.65 0.20 0.00 ---- 0.00 ---- 0.00 ----
2 v3 14 2.10 0.15 15 0.33 0.15 0.00 ---- 0.00 ----
3 v4 22 4.07 0.33 23 0.51 0.21 24 -0.01 0.20 0.00 ----
4 v5 31 3.88 0.30 32 0.62 0.22 33 0.13 0.22 34 -0.03 0.19
5 v6 41 0.88 0.23 42 2.58 0.45 43 0.01 0.90 44 1.30 0.74
6 v7 51 0.55 0.15 52 1.46 0.27 53 0.14 0.51 54 0.74 0.42
7 v8 61 1.07 0.24 62 3.03 0.47 63 0.26 1.02 64 1.36 0.85
8 v9 71 0.94 0.22 72 2.71 0.42 73 0.28 0.93 74 1.28 0.79
9 v10 81 0.72 0.13 82 -0.17 0.40 83 0.39 0.54 84 1.29 0.24

...
16 v17 151 0.92 0.14 152 0.29 0.44 153 1.36 0.28 154 0.62 0.55
17 v18 161 1.00 0.15 162 0.52 0.51 163 1.59 0.30 164 0.59 0.63
18 v19 171 1.28 0.21 172 0.94 0.75 173 2.39 0.44 174 0.59 0.95
19 v20 181 1.02 0.15 182 0.54 0.46 183 1.45 0.26 184 0.40 0.58
20 v21 191 0.61 0.11 192 0.24 0.21 193 0.51 0.21 194 0.43 0.23
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In the output produced by our EFA analysis, the typical IRT parameters
(slopes and intercepts) are reported first. Of particular note in the slope
parameter table (just presented) is the fact that not all items load on all
slopes, as some users may have expected. Within the CFA context, EFA can be
conceptualized as a minimally constrained confirmatory model, so while a large
majority of the items load on all factors some constraints have been imposed to
identify the model. Specifically, for an m-dimensional model, it is necessary to
impose (m(m− 1))/2 constraints for identification. flexMIRTTM meets this
requirement by fixing the slope to zero on a given factor for any item where
the item number is less than the factor number (e.g., item number two of the
model, labeled v3, has fixed slopes on factors 3 and 4 as 2 [item number] is
less than both 3 and 4 [factor numbers where slopes of v3 are fixed]).

After the item parameter tables, the factor loadings are printed, per our
FactorLoadings = Yes; request. Below that we find the section labeled
“...Rotated Loadings..." which are the estimates of primary interest.

Output 5.2: EFA Output - Rotated Factor Loadings and Factor Correlations

Oblique CF-Quartimax Rotated Loadings for Group 1: Group1
Item Label lambda 1 lambda 2 lambda 3 lambda 4

1 v2 0.85 0.06 -0.02 0.10
2 v3 0.77 -0.01 -0.00 -0.04
3 v4 0.92 0.00 -0.01 -0.02
4 v5 0.90 -0.03 0.04 -0.04
5 v6 0.00 0.04 -0.07 -0.88
6 v7 0.00 0.03 0.02 -0.69
7 v8 0.01 -0.02 0.03 -0.89
8 v9 -0.01 -0.00 0.04 -0.86
9 v10 -0.05 0.70 0.02 0.04

10 v11 -0.00 0.77 -0.04 -0.03
11 v12 0.01 0.67 0.06 0.01
12 v13 0.03 0.70 -0.02 -0.04
13 v14 0.03 0.75 0.01 -0.02
14 v15 0.09 0.49 0.19 -0.04
15 v16 0.03 0.06 0.66 -0.08
16 v17 0.01 0.14 0.66 0.07
17 v18 -0.00 0.06 0.74 0.01
18 v19 -0.02 -0.07 0.90 -0.03
19 v20 0.07 -0.02 0.72 -0.00
20 v21 0.08 0.16 0.28 -0.05

Oblique CF-Quartimax Rotated Factor Correlation Matrix for Group 1: Group1
Theta 1 Theta 2 Theta 3 Theta 4

Theta 1 1.00
Theta 2 0.51 1.00
Theta 3 0.51 0.61 1.00
Theta 4 -0.38 -0.44 -0.52 1.00

As can be seen, following the specified oblique, CF-Quartimax rotation of
the initial extraction values, all items are now loading on all factors. Typically,
an EFA solution will be used to inform a subsequent confirmatory model. The
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rotated factor loading values may be examined to find groups of items that
load saliently on each factor (such as items v2 - v5 on factor 1; v6 - v9 on
factor 2). Below the rotated factor loadings, we find the non-zero correlations
among the rotated factors, indicating that the Oblique = Yes; command was
interpreted properly.
5.1.2 EFA with Target Rotation

The just-discussed example conducted analytic rotation with no information
provided by the user regarding expectations. As noted in the introduction,
however, theory and previous empirical work have provided us with informa-
tion regarding how the items are expected to group together. flexMIRTTM is
able to accommodate such information through the use of rotation to a par-
tially specified target (e.g., Browne, 2001).

Example 5-2: EFA with Target Rotation

1 <Project>
2 Title = "QOL Data";
3 Description= "Items 2-9 - 2D EFA with target rotation";
4
5 <Options>
6 Mode = Calibration;
7 Quadrature = 21, 5.0;
8 Processors = 2;
9 Etol = 1e-3;

10 NewThreadModel = Yes;
11 FactorLoadings = Yes;
12 SavePCC = Yes;
13
14 <Groups>
15 %Group1%
16 File ="QOL.DAT";
17 Varnames = v1-v35;
18 Select= v2-v9;
19 Ncats(v2-v9) = 7;
20 Model(v2-v9) = Graded(7);
21 BetaPriors(v2-v9) = 1.5;
22
23 Dimensions= 2;
24 Rotation = Target;
25 Oblique = Yes;
26
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27 UnspecifiedTargetElement = 9;
28 Target = (
29 9 0,
30 9 0,
31 9 0,
32 9 0,
33 0 9,
34 0 9,
35 0 9,
36 0 9);
37
38 <Constraints>

In the example syntax for target rotation, the commands are largely un-
changed from the previous example, although we have reduced the number
of items/dimensions used in the interest of analysis run time and specified
Rotation = Target; to indicate that target rotation is desired. Also notice
that in the <Options> section, we have included the command SavePCC= Yes;
which creates an additional *-pcc.txt output file containing the eigenvalues of
the polychoric correlation matrix, the unique elements of the polychoric cor-
relation matrix of the analyzed items, as well as item thresholds.

When target rotation is used, it is necessary to provide flexMIRTTM a
matrix which will serve as the target for the rotation. By this, we mean
flexMIRTTM will perform the rotation so all loadings specified as 0 in the tar-
get matrix will be as close to zero as possible while the unspecified elements of
the matrix (the 9’s in the example target matrix) have no expectations/desired
values. As can be seen, the theoretical item groupings noted in the introduc-
tion (e.g., items v2 - v5 comprise a “family QOL” factor) are set up here by
leaving each subset of items as unspecified elements on one of the factors.
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Output 5.3: EFA Output - Factor Loadings Rotated to a Target

Oblique Target Rotated Loadings for Group 1: Group1
Item Label Target lambda 1 Target lambda 2

1 v2 ? -0.87 0.00 0.08
2 v3 ? -0.75 0.00 -0.06
3 v4 ? -0.93 0.00 0.01
4 v5 ? -0.90 0.00 -0.04
5 v6 0.00 0.01 ? -0.87
6 v7 0.00 -0.01 ? -0.71
7 v8 0.00 -0.01 ? -0.89
8 v9 0.00 0.00 ? -0.88

The output from a target rotation is similar to other analyses up to the
rotated factor loadings table. In the reported “...Rotated Loadings...” sec-
tion shown above flexMIRTTM reports estimated, rotated factor loading val-
ues. Additionally, it also reprints the target matrix, column by column, it
attempted to rotate the solution to, with unspecified elements represented by
?s.

5.2. Confirmatory Multidimensional Model - 4 Corre-
lated Factors

The typical progression of modeling new item sets generally goes from EFA to
CFA, using EFA results and theory to inform the factor pattern of the confir-
matory model. The first EFA example with non-target rotation provided good
evidence that a 4-factor solution is supported by the data but also contained
many items that loaded on factors they are not theoretically related to. To
assess the suitability of a more parsimonious model, we will fit a confirmatory
four factor model to the subset of the items (v2-v21) we previously submitted
to EFA, allowing items to load on/have slope parameters for only those factors
to which they are expected to be related.
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Example 5-3: Confirmatory MIRT Model with Correlated Factors - Graded

1 <Project>
2 Title = "QOL Data";
3 Description= "Items 2-21, 4 Correlated Factors CFA"
4 "NOTE: THIS EXAMPLE TAKES ~1hr TO COMPLETE;
5
6 <Options>
7 Mode = Calibration;
8 Quadrature = 21, 5.0;
9 Processors = 4;

10 SavePRM = Yes;
11 FactorLoadings = Yes;
12
13 <Groups>
14 %Group1%
15 File ="QOL.DAT";
16 Varnames = v1-v35;
17 Select= v2-v21;
18 Dimensions = 4;
19 Ncats(v2-v21) = 7;
20 Model(v2-v21) = Graded(7);
21
22 <Constraints>
23 Fix(v2-v21),Slope;
24
25 Free(v2-v5),Slope(1);
26 Free(v6-v9),Slope(2);
27 Free(v10-v15),Slope(3);
28 Free(v16-v21),Slope(4);
29
30 Free Cov(2,1);
31 Free Cov(3,1);
32 Free Cov(3,2);
33 Free Cov(4,1);
34 Free Cov(4,2);
35 Free Cov(4,3);
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Points of note in the syntax, relevant to the fitted multidimensional model,
are the Dimensions statement in the <Groups> section and the various con-
straints encountered in the <Constraints> section. As described earlier, we
are fitting a model with four factors, hence the Dimensions = 4; statement.
Within the <Constraints> section, we are assigning the items to the appro-
priate factors.

The first step in assigning items to factors is to fix all slope values to 0, via
the Fix (v2-v21),Slope; statement. This allows us, in the next step, to free
the individual items to load on only the appropriate factors. As can be seen in
the four Free statements, we are specifying that Items 2 through 5 load on the
first factor, Items 6 through 9 load on the second factor, Items 10 through 15
load are assigned to the third factor, and the remaining items are assigned to
factor 4. This corresponds to the description provided earlier, in which Items
2 to 5 belong to the “Family” factor only and Items 6 to 9 belong to only the
“Money” factor and so on. The final constraints, such as Free Cov(2,1);, are
used to tell flexMIRTTM to freely estimate the covariance/correlation between
the factors. Using the lower triangle of the variance/covariance matrix of the
latent factors to determine positions, the variance of the first factor is found at
Cov(1,1), the variance of the second factor at Cov(2,2) and the covariance of
those two factors is located in Row 2, Column 1 (i.e., Cov(2,1)) of the matrix.

Additionally, in the <Options> section, the Quadrature command is again
encountered. As with the previous EFA examples, reducing the number of
quadrature points from the default value (49 points per dimension) may be
necessary when fitting MIRT models because the total number of points used
is exponentially related to the number of dimensions. With higher dimensional
models, the total number of quadrature points (and therefore processing time)
may become unwieldy if the default value is maintained.

Within the output, the various sections are arranged as with the other ex-
amples. In the output file, the factor loadings are printed below the estimated
item parameters, as requested by the FactorLoadings = Yes; statement. As
seen before, the group means of the latent variables are reported followed by
the estimated latent variable variance/covariance matrix. This section of the
output is presented below.
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Output 5.4: Correlated Four Factor Confirmatory Model Output - Loadings,
Means and Variances

Factor Loadings for Group 1: Group1
Item Label lambda 1 s.e. lambda 2 s.e. lambda 3 s.e. lambda 4 s.e.

1 v2 0.83 0.03 0.00 ---- 0.00 ---- 0.00 ----
2 v3 0.78 0.03 0.00 ---- 0.00 ---- 0.00 ----
3 v4 0.93 0.02 0.00 ---- 0.00 ---- 0.00 ----
4 v5 0.92 0.02 0.00 ---- 0.00 ---- 0.00 ----
5 v6 0.00 ---- 0.87 0.03 0.00 ---- 0.00 ----
6 v7 0.00 ---- 0.72 0.05 0.00 ---- 0.00 ----
7 v8 0.00 ---- 0.90 0.02 0.00 ---- 0.00 ----
8 v9 0.00 ---- 0.88 0.03 0.00 ---- 0.00 ----
9 v10 0.00 ---- 0.00 ---- 0.66 0.06 0.00 ----

10 v11 0.00 ---- 0.00 ---- 0.74 0.05 0.00 ----
11 v12 0.00 ---- 0.00 ---- 0.71 0.05 0.00 ----
12 v13 0.00 ---- 0.00 ---- 0.72 0.05 0.00 ----
13 v14 0.00 ---- 0.00 ---- 0.78 0.04 0.00 ----
14 v15 0.00 ---- 0.00 ---- 0.72 0.05 0.00 ----
15 v16 0.00 ---- 0.00 ---- 0.00 ---- 0.77 0.04
16 v17 0.00 ---- 0.00 ---- 0.00 ---- 0.73 0.04
17 v18 0.00 ---- 0.00 ---- 0.00 ---- 0.76 0.04
18 v19 0.00 ---- 0.00 ---- 0.00 ---- 0.84 0.03
19 v20 0.00 ---- 0.00 ---- 0.00 ---- 0.75 0.04
20 v21 0.00 ---- 0.00 ---- 0.00 ---- 0.49 0.07

QOL Data
Items 2-21, 4 Correlated Factors.

NOTE: THIS EXAMPLE TAKES ~1hr TO COMPLETE

Group Latent Variable Means:
Group Label P# mu 1 s.e. P# mu 2 s.e. P# mu 3 s.e. P# mu 4 s.e.

1 Group1 0.00 ---- 0.00 ---- 0.00 ---- 0.00 ----

Latent Variable Variance-Covariance Matrix for Group 1: Group1
P# Theta 1 s.e. P# Theta 2 s.e. P# Theta 3 s.e. P# Theta 4 s.e.

1.00 ----
141 0.41 0.04 1.00 ----
142 0.55 0.03 143 0.50 0.04 1.00 ----
144 0.55 0.04 145 0.56 0.03 146 0.69 0.03 1.00 ----

The pattern of the estimated loadings indicates that the items were as-
signed to the factors as expected, with certain loadings restricted to 0.00 and
having no associated SE. Because there is only a single group, the latent vari-
able means were also restricted to zero and have no associated SE, indicating
they were not estimated. The final section in the output excerpt reports the
correlation matrix of the latent variable - for example, the correlation between
the first two standardized factors is estimated to be 0.41, with a SE of 0.04.

5.3. The Bifactor Model
The item bifactor model is a special multidimensional IRT model, in which
each item is restricted to load on, at most, two factors. The typical set up
for a bifactor model is one factor on which all the items load, termed the
general factor, and several additional factors, termed group-specific factors,
onto which only subsets of the items load. A common substantive example of
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this would be a reading test made up of several short reading passages that
each have several items probing the students comprehension for a particular
passage. The general factor in this case would be “Reading” and each passage
would have its own specific factor, onto which only the items related to that
passage load.

Chief among the benefits of the item bifactor model is computational ef-
ficiency in which full-information maximum marginal likelihood estimation of
item parameters can proceed with 2-dimensional integration regardless of how
many group-specific factors are in the model, due to a result first discovered
by Gibbons and Hedeker (1992). The bifactor model in flexMIRTTM is in
fact obtained as a two-tier model (Cai, 2010a). flexMIRTTM is fully capable
of multiple-group bifactor or two-tier modeling as detailed in Cai, Yang, and
Hansen (2011). Also note that Bradlow, Wainer, and Wang’s (1999) testlet re-
sponse theory model can be understood as a further restricted bifactor model
with within-item proportionality constraints on the general and group-specific
slopes (see also, Glas, Wainer, & Bradlow, 2000). With its generalized ca-
pability to impose constraints, flexMIRTTM is able to estimate testlet models
too.
5.3.1 Bifactor Model Using the Reparameterized Nominal Cate-

gories Model

Here, we use the full 35 item Quality of Life data to illustrate a bifactor
analysis, specifying a general QOL factor and 7 specific factors to capture
the subdomains mentioned earlier. Gibbons et al. (2007) reported a graded
bifactor analysis of this data set using the original 7 categories and we will
replicate this structure but employ a full-rank nominal model.

Example 5-4: Bifactor Structure - Nominal Model

1 <Project>
2 Title = "QOL Data";
3 Description = "35 Items Bifactor Nominal Model";
4
5 <Options>
6 Mode = Calibration;
7 Quadrature = 21, 5.0;
8 Etol = 1e-4;
9 Mtol = 1e-5;
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10
11 <Groups>
12 %Group1%
13 File ="QOL.DAT";
14 Varnames = v1-v35;
15 N = 586;
16 Ncats(v1-v35) = 7;
17 Model(v1-v35) = Nominal(7);
18 Dimensions = 8;
19 Primary= 1;
20
21 <Constraints>
22 Fix(v1-v35, ScoringFn(1);
23
24 Fix(v1-v35), Slope;
25
26 Free(v1-v35), Slope(1);
27 Free(v2-v5), Slope(2);
28 Free(v6-v9), Slope(3);
29 Free(v10-v15), Slope(4);
30 Free(v16-v21), Slope(5);
31 Free(v22-v26), Slope(6);
32 Free(v27-v31), Slope(7);
33 Free(v32-v35), Slope(8);

With regard to the bifactor structure, in the <Groups> section, a multidi-
mensional model with 8 dimensions is first specified. This is the total number
of domains/factors, both general and specific. The Primary command spec-
ifies, out of the total number of dimensions, how many are primary/general
dimensions. As noted in the data description, the QOL scale is made of 1
general domain and 7 subdomains.

Once the dimensionality of the model is set up in the <Groups> section,
the details of which items load onto which specific factors are given in the
<Constraints> section. The first constraint serves to fix all item slopes to
zero, facilitating the subsequent freeing of parameters. The next 8 lines set
up the factor structure by 1) freeing all the item slopes on the first dimension,
which will be the general factor, and 2) assigning the items to the appropriate
subdomains, based on the item content. Note that it is absolutely necessary
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to ensure that the primary dimension(s) precede the group-specific dimensions
when freeing items to load on the factors. flexMIRTTM automatically reduces
the dimensionality of integration to 2 for this model and, consequently, the
analysis runs extremely fast.

The Model(v1-v35) = Nominal(7); statement in the <Groups> section
indicates that we wish to fit the Nominal Model (for 7 response categories)
to the items. In the current code, we have opted not to modify either the
scoring functions contrasts (which can be accomplished via the Ta(var) = ;
statement) or the intercept contrast matrix (which can be accomplished via
the Tc(var) = ; statement). Without changes, the default option of Trend
matrices will be used for both sets of parameters. In the <Constraints>
section, the first constraint imposed fixes the first scoring function contrast
for all 35 items (the default value is 1.0), as required for identification (see
Thissen et al., 2010). With the default contrast matrices, the fixed first scoring
function contrast of 1.0 ensures that the first and last scoring function values
are fixed to 0 and 6, respectively. The remaining 5 scoring function values are
reparameterized by the contrast matrices and become estimable parameters
(as shown below).

In the <Options> section, the number of quadrature points is reduced for
time-efficiency, as was done with the other MIRTmodels, using the Quadrature
statement and the tolerance values are adjusted down to obtain tighter solu-
tions.

Output 5.5: Nominal Model Scoring Function Estimates - Excerpt

Nominal Model Scoring Function Values (s) under Dimension 1 for Group 1: Group1
Item Label s 1 s 2 s 3 s 4 s 5 s 6 s 7

1 v1 0.00 0.76 1.18 1.46 3.29 4.61 6.00
2 v2 0.00 0.79 1.53 2.58 4.18 4.77 6.00

...
15 v15 0.00 1.32 1.09 2.25 3.22 4.16 6.00
16 v16 0.00 1.52 1.71 2.65 3.96 4.99 6.00
17 v17 0.00 1.81 2.47 2.78 3.91 4.69 6.00

...
34 v34 0.00 1.48 1.40 2.32 3.53 4.45 6.00
35 v35 0.00 1.39 1.10 1.65 3.32 4.19 6.00

An examination of the output excerpt presented shows that a number of
general dimension scoring function values exhibit reversal of categories from
the presumed order (such as in Items 13, 15, 34, and 35) or category bound-
aries that are very close together (such as categories 2 and 3 in Items 16). As
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Preston, Reise, Cai, and Hays (2011) explained, when the estimated scoring
function values deviate from the presumed order of 0, 1, 2, . . . , 6, the nomi-
nal model provides additional category-specific information that other ordinal
polytomous IRT models (e.g., partial credit or graded) do not provide. As
noted earlier, the item responses were collected on a 7-point categorical re-
sponse scale indicating the extent to which the respondent is satisfied with the
content probed in the item, where: 0=terrible; 1=unhappy; 2=mostly dissat-
isfied; 3=mixed, about equally satisfied and dissatisfied; 4=mostly satisfied;
5=pleased; and 6=delighted. There may be some uncertainty as to how people
interpret the order of the middle categories.
5.3.2 Bifactor Model Using the 2PL

Due to the undesirable properties when analyzing the QOL data with all 7
categories, we will again demonstrate how flexMIRTTM may be used to recode
data, this time combining some response categories, rather than the simple
“reduce each value by one” shown in Example 2-5 to get zero-based item
responses for analysis. We will fit the same bifactor factor pattern to the QOL
data, but rather than utilizing all 7 categories, we will collapse the data into
dichotomous responses and fit the 2PLM.

Example 5-5: Bifactor Structure - 2PL

1 <Project>
2 Title = "QOL Data";
3 Description = "35 Items Bifactor Showing Respond Collapsing";
4
5 <Options>
6 Mode = Calibration;
7 Quadrature = 21, 5.0;
8 SavePRM = Yes;
9 Processors = 4;

10
11 <Groups>
12 %Group1%
13 File ="QOL.DAT";
14 Varnames = v1-v35;
15 N = 586;
16 Ncats(v1-v35) = 7;
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17 Code(v1-v35) = (0,1,2,3,4,5,6),(0,0,0,1,1,1,1);
18 Model(v1-v35) = Graded(2);
19 Dimensions = 8;
20 Primary = 1;
21
22 <Constraints>
23 Fix(v1-v35),Slope;
24
25 Free(v1-v35),Slope(1);
26 Free(v2-v5),Slope(2);
27 Free(v6-v9),Slope(3);
28 Free(v10-v15),Slope(4);
29 Free(v16-v21),Slope(5);
30 Free(v22-v26),Slope(6);
31 Free(v27-v31),Slope(7);
32 Free(v32-v35),Slope(8);

The Code command is used to collapse the 7 original categories into 2. A
point of note here is that the Ncats value provided refers to the number of
categories in the raw data file, not the number of categories that will be used for
modeling, which is specified with the Model statement. An examination of the
Code statement shows that original responses of 0,1, and 2 will be recoded into
0s and raw responses of 3-6 will become 1s after the recoding by the program.
The bifactor structure remains unchanged from the previous example, as may
be seen in the <Constraints> section.
5.3.3 Testlet Response Model Using the 2PL

As mentioned when introducing the bifactor model, the testlet model can be
obtained as a special case of the bifactor model. Due to interest in such
models, we present an example of the testlet response model, still using the
QOL dataset from the previous examples.
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Example 5-6: Testlet Model - 2PL - Excerpt

1 <Project>
2 Title="QOL Data";
3 Description="35 Items Graded Testlet Response Model";

...
24 <Constraints>
25 Fix(v1-v35),Slope;
26 Free(v1-v35),Slope(1);
27 Free(v2-v5),Slope(2);
28 Free(v6-v9),Slope(3);
29 Free(v10-v15),Slope(4);
30 Free(v16-v21),Slope(5);
31 Free(v22-v26),Slope(6);
32 Free(v27-v31),Slope(7);
33 Free(v32-v35),Slope(8);
34
35 Equal G,(v2-v5),Slope(1) : G,(v2-v5),Slope(2);
36 Equal G,(v6-v9),Slope(1) : G,(v6-v9),Slope(3);
37 Equal G,(v10-v15),Slope(1) : G,(v10-v15),Slope(4);
38 Equal G,(v16-v21),Slope(1) : G,(v16-v21),Slope(5);
39 Equal G,(v22-v26),Slope(1) : G,(v22-v26),Slope(6);
40 Equal G,(v27-v31),Slope(1) : G,(v27-v31),Slope(7);
41 Equal G,(v32-v35),Slope(1) : G,(v32-v35),Slope(8);
42
43 Free Cov(2,2);
44 Free Cov(3,3);
45 Free Cov(4,4);
46 Free Cov(5,5);
47 Free Cov(6,6);
48 Free Cov(7,7);
49 Free Cov(8,8);

To save space, we focus on the <Constraints> section for this example -
the <Options> and <Groups> are similar to previous examples. The full code
for this example is available on the flexMIRTTM support page.

Using the first group of statements in the <Constraints> section, we set
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up the bifactor structure, exactly as was done in the previous two examples,
by fixing all slopes with the Fix statement and then free slopes onto fac-
tors as needed to achieve the appropriate structure, including non-overlapping
testlets.

The second set of statements, comprised of Equal statements, is used to set
slopes across factors equal within items. As briefly noted earlier, the testlet re-
sponse model is a constrained form of the bifactor model imposing within-item
proportionality constraints; equality is the form of proportionality employed
here.

Finally, with the third group of constraints, we free the variances of all
the specific factors. The rationale for including the testlet parameters in this
manner (via equality constraints and freed specific variances), as well as the
interpretation of the model parameters is provided in Glas et al. (2000), specif-
ically in what they label Alternative 1.

As noted in various places throughout the MIRT chapter, high-dimensional
models estimated with the default Bock-Aitkin EM algorithm can take an ex-
tremely long time to complete or may not complete at all due to computational
limitations of the method. In the next chapter, we cover an alternate estima-
tion method, based on Markov chain Monte Carlo (MCMC) principals, that
is able to estimate such high-dimensional models easily.
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CHAPTER 6

Alternative Estimation Methods for High-Dimensional
and Complex Models

Although Bock and Aitkin’s (1981) EM algorithm (BAEM) made IRT param-
eter estimation practical, the method does have shortcomings with the most
noticeable one being its limited ability to generalize to truly high-dimensional
models. This is due primarily to the need to evaluate high-dimensional in-
tegrals in the likelihood function for the item parameters. As the number
of dimensions of a model increases linearly, the number of quadrature points
increases exponentially, making BAEM estimation unwieldy and computation-
ally expensive for models with more than three or four latent factors.

Two alternative estimation methods which avoid the so-called “curse of
dimensionality” associated with BAEM estimation have been implemented in
flexMIRT c©: a Metropolis-Hastings Robbins-Monro (MH-RM) algorithm (Cai,
2010b, 2010c) and Markov chain Monte Carlo (MCMC)-based estimation (e.g.,
Edwards, 2010). This chapter serves as a detailed examination of the particu-
lars of MH-RM and MCMC estimation and flexMIRTTM settings and syntax
commands used when estimating models via these alternate methods. We will
briefly discuss these two methods to acquaint those users less familiar with
these modern estimation methods, cover the available flexMIRTTM options
and syntax commands that are specific to these estimation routines, and pro-
vide working examples with discussion.

6.1. Overview of MH-RM Estimation
In brief, the MH-RM algorithm is a data augmented Robbins-Monro type (RM;
Robbins & Monro, 1951) stochastic approximation (SA) algorithm driven by
the random imputations produced by a Metropolis-Hastings sampler (MH;
Hastings, 1970; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953),
which is a sampling method-based on the principles of MCMC. The MH-RM
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algorithm is motivated by Tittering’s (1984) recursive algorithm for incomplete
data estimation, and is a close relative of Gu and Kong’s (1998) SA algorithm.
It can also be conceived of as an extension of the Stochastic Approximation
EM algorithm (SAEM; Celeux & Diebolt, 1991; Celeux, Chauveau, & Diebolt,
1995; Delyon, Lavielle, & Moulines, 1999) when linear sufficient statistics do
not naturally exist in the complete data model.

Within the flexMIRTTM implementation, the MH-RM iterations improve
on initial start values (Stage I) and further improves upon these values during
a supplemented EM-like stage (Stage II) - both Stage I and Stage II use a
fixed number of cycles. Stage III is home to the MH-RM algorithm and where
the primary estimation of parameters occurs. Cycles in Stage III terminate
when the estimates stabilize.

Cycle j + 1 of the MH-RM algorithm for multidimensional IRT consists of
three steps:

• Imputation. In the first step, conditional on provisional item and la-
tent density parameter estimates β(j) from the previous cycle, random
samples of the individual latent traits θ(j+1) are imputed using the MH
sampler from a Markov chain having the posterior of the individual latent
traits π(θ|Y , β(j)) as the unique invariant distribution.

• Approximation. In the second step, based on the imputed data, the
complete data log-likelihood and its derivatives are evaluated so that
the ascent directions for the item and latent density parameters can be
determined later.

• Robbins-Monro Update. In the third step, RM stochastic approximation
filters are applied when updating the estimates of item and latent den-
sity parameters. First, the RM filter will be applied to obtain a recursive
stochastic approximation of the conditional expectation of the complete
data information matrix. Next, we use the RM filter again when updat-
ing the new parameter estimates. Cai (2010c) showed that the sequence
of parameters converges with probability 1 to a local maximum of the
likelihood of the parameter estimates, given the observed data.

For more detailed descriptions of the estimation method, see Cai (2010b,
2010c).
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6.2. Overview of MCMC Estimation
Markov chain Monte Carlo methods evolved from work done on the Manhattan
project by Nicholas Metropolis and colleagues (see Metropolis & Ulam, 1949;
Metropolis et al., 1953). A generalization produced by Hastings (1970) led
to the common form of the algorithm we see now. The resulting algorithm
(the Metropolis-Hastings algorithm) is a very general MCMC method. The
powerful aspect of the contribution, as explained by originators of the method,
“...is that we avoid dealing with multiple integrations or multiplications of the
probability matrices, but instead sample single chains of events." (Metropolis
& Ulam, 1949, p.339)

MCMC is perhaps most commonly associated with Bayesian inference and
statistics. As noted by several authors though, MCMC is actually not inher-
ently Bayesian (see Geyer, 1996 for a more detailed discussion). Despite that,
we suspect the vast majority of situations where users will see MCMC will be
in the Bayesian context. While our goal is not to explain Bayesian statistics,
we must define a few terms before proceeding. Critical to our discussion is
the idea of a posterior distribution, which also necessitate the explanation of
a prior distribution. The posterior is the product of the likelihood and the
prior. The likelihood is a function we should be familiar with from maximum
likelihood (ML). In ML, we choose parameters such that the likelihood of the
data given those parameters is maximized. This is the same likelihood we find
in Bayesian statistics. The difference is that we also find a prior distribution,
which, depending on which Bayesian you ask, is either a summary of existing
evidence about a parameter or a statement of the analyst’s subjective belief
about what the parameters is. The focus of inference is then the posterior
distributions of our parameters.

MCMC estimation methods can be thought of as Monte Carlo integration
using Markov chains (Gilks, Richardson, & Spiegelhalter, 1996a). Monte Carlo
integration works by drawing samples from π(.), some target distribution of
interest, and then computing averages to approximate expectations. The diffi-
culty is making independent draws from π(.) By creating a Markov chain with
π(.) as its target distribution, one is able to make dependent draws from the
distribution of interest. A Markov chain is a sequence of random events such
that what happens at time t+1 depends on the state of the chain at time t
and not any prior state. Once the Markov chain has converged (i.e., is station-
ary), samples from that chain will approximate samples from the distribution
of interest. In models like IRT, the distributions of interest are posterior dis-
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tributions for item and person parameters. Point estimates can be taken as
means or modes of these distributions and we can learn about the variability
in our estimates by calculating the standard deviation of the posterior (i.e., a
kind of standard error).

Applications of MCMC in the IRT world are now fairly commonplace.
Significant early efforts by Albert (1992), Patz and Junker (1999a, 1999b),
and Fox and Glas (2001) paved the way. More specific information about
MCMC as it relates to IRT can be found in Edwards (2010) and Wirth and
Edwards (2007). There are hundreds of papers and dozens of books on the
topic, but we have found Gilks, Richardson, and Spiegelhalter (1996b) and
chapters 10 and 12 in Gill (1996) to be especially useful.
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6.3. Alternative Estimation Method-Specific Syntax Op-
tions

Below provides all MH-RM and MCMC-specific commands collected together.
The only required statements for MH-RM or MCMC to run is the algorithm
call, which is bolded in the table. All other commands are optional, but users
should review the descriptions provided in the following pages as
there are syntax statements whose defaults should to adjusted on a
model-by-model basis to obtain converged, stable, and trustworthy
solutions.

Syntax Display 6.1: Engine Mode Settings to Call MH-RM or MCMC
Estimation and MH-RM Specific Commands

<Options>
Algorithm = MHRM/MCMC;

//Shared MH-RM and MCMC commands
RndSeed = 1842;
Imputations = 1;
Score = MI;

// Note: other scoring methods can be used with MH-RM and MCMC,
but Score = MI; is only available when non-BAEM est. is used

SaveMCO = Yes/No;
ProposalStd = 1.0;
ProposalStd2 = 1.0;

//MH-RM-specific commands
Burnin = 10;
Thinning = 10;
Stage1 = 200;
Stage2 = 100;
Stage3 = 2000;
Stage4 = 0;
InitGain = 0.10;
Alpha = 1.0;
Epsilon = 1.0;
WindowSize = 3;
MCsize = 2500;
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//MCMC-specific commands or defaults
Burnin = 500;
Thinning = 25;
ItemProposalStd = 0.1;
MaxCycle = 500;

<Groups>
Covariates = vars /0;
L2covariates = 0;
CovariateCorr = 0;

The alternate estimation algorithm are available for calibration runs, scoring-
only runs (particularly for when plausible values/multiple imputation theta es-
timates are desired), or combined calibration and scoring runs. To call the one
of the alternate estimation algorithms, only Algorithm = MHRM; or Algorithm
= MCMC;is required; all other listed commands are optional, with the default
values shown above.However, users should review the descriptions pro-
vided in the following pages as there are syntax statements whose
defaults should to adjusted on a model-by-model basis to obtain
converged, stable, and trustworthy solutions.

Imputations controls the number of imputations from the MH step per
RM cycle. A larger value will lead to smoother behavior from the algorithm.
In most cases, a value of 1 should be sufficient for obtaining accurate point
estimations, however this number may be increased for better standard errors.
Additionally, when Score = MI;, which is only available with non-BAEM es-
timation, the value of Imputations will also control the number plausible
values drawn from individual theta posteriors and saved to the -sco file.

The Burnin statement controls the number of draws that are discarded
from the start of the MH sampler. These draws are discarded to avoid using
values that were sampled before the chain had fully converged to the target
distribution. Burnin = 10; tells flexMIRTTM to discard the first 10 values
obtained by the MH sampler.

Thinning refers to the sampling-method based estimation practice of re-
taining only every kth draw from a chain. Thinning is used, in part, to
reduce the possible autocorrelation that may exist between adjacent draws.
The Thinning statement sets the interval for the MH sampler - meaning if
Thinning = 10;, every 10th draw by the sampler will be retained.
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SaveMCO = Yes; is used to save out, when Algorithm = MHRM;, the MH-
RM Stage 1 iteration history or, when Algorithm = MCMC;, the drawn pa-
rameter values into a separate -mco output file. When using MCMC es-
timation, the values in the –mco file should be plotted to examine
MCMC chain convergence. In the -mco file when using MCMC estima-
tion, the columns are the individual estimated parameters, with parameters
reported in parameter number order (which is printed in the -irt file). The
first row of the -mco file are the starting values for the parameters, the next
rows will be the draws discarded as the burn-in (e.g., if Burnin=250;, the
next 250 rows will be draws from those 250 cycles). Following the burn-in
rows, the thinned main cycle rows draws are reported. If Thinning = 10;
and MaxCycle = 1000, that means 1000 main cycle draws will be in the -mco
file, but 1000*10 draws were completed to get those values. Users are directed
to Edwards (2010) for an oveview of examining MCMC chain convergence and
relevant references.

ProposalStd and ProposalStd2 control the dispersion of the Metropolis
proposal densities for the first and second level of the specified model, respec-
tively. If a single level model is specified, only the ProposalStd command
will be used. Although default values of 1.0 have been set for both
of these commands, these values need to be adjusted on a case-by-
case basis. The values used will depend on the complexity of the model, the
number of items, the type of items (e.g., dichotmous, polytomous), and the
model fit to the items (e.g., Graded, 3PL, Nominal). The user should choose
ProposalStd and ProposalStd2 values so that the long-term average of the
acceptance rates (which is printed for each iteration in the progress window)
for level 1 and level 2 (if applicable) are around 0.5 for lower dimensional
models (<= 3 factors) and in the 0.2 - 0.3 range for higher dimensional/more
complex models. Generally speaking, increasing the ProposalStd value will
result in lowered acceptance rates while decreasing the value will result in
higher acceptance rates. Users are directed to Roberts and Rosenthal (2001)
for optimal scaling, choice of dispersion constants, and long-term acceptance
rates of Metropolis samplers.

Stage1 determines the number of Stage I (constant gain) cycles. The
Stage I iterations are used to improve default or user-supplied starting values
for the estimation that occurs in Stage II. Stage2 specifies the number of
Stage II (Stochastic EM, constant gain) cycles. The Stage II iterations are
used to further improve starting values for the MH-RM estimation that occurs
in Stage III. Stage3 sets the maximum number of allowed MH-RM cycles to
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be performed.
Stage4 determines the method by which SEs are found. If Stage4 = 0;

then SEs will be approximated recursively (see Cai, 2010b). If a non-zero
value is given then the Louis formula (Louis, 1982) is used directly. If the
Louis formula is to be used, the supplied value determines the number of
iterations of the SE estimation routine; this number will typically need to be
large (i.e., 1000 or more).

InitGain is the gain constant for Stage I and Stage II. If the algorithm
is initially taking steps that are too large this value may be reduced from the
default to force smaller steps.

Alpha and Epsilon are both Stage III decay speed tuning constants. Alpha
is the first tuning constant and is analogous to the InitGain used in Stages
I and II. Epsilon controls the rate at which the sequence of gain constants
converge to zero. Specified Epsilon values must be in the range (0.5, 1], with
a value closer to 1 indicating a faster rate of convergence to zero.

WindowSize allows the user to set the convergence monitor window size.
Convergence of the MH-RM algorithm is monitored by calculating a window of
successive differences in parameter estimates, with the iterations terminating
only when all differences in the window are less than 0.0001. The default value
of the window size is set at 3 to prevent premature stoppage due to random
variation.

MCSize is the Monte Carlo size for final log-likelihood, AIC, and BIC ap-
proximations.

When using MCMC, the item parameter draws are divided up into indepen-
dent segments in the flexMIRTTM implemented Metropolis-Hastings within
Gibbs set up. ItemProposalStd sets the proposal dispersion for item param-
eter segments.

MaxCycle controls the total number of MCMC draws to be accepted fol-
lowing the specified number of burn in cycles. For instance, if MaxCycle =
1000 that means that 1000 draws will be printed to the -mco file but the total
number of completed draws will be MaxCycle number of draws multipled by
the specified thinning value.

Within the <Groups> section there are handful of commands, regarding co-
variates, that are only available when one of the alternate estimation methods
is used. During calibration, Covariates is used to supply flexMIRTTM with
a list of variables that will serve as predictors of the latent variable estimates.
It is expected that continuous variables will be supplied as covariates or, for
categorical covariates, that appropriate codings (effect coding, dummy coding,
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etc.) into multiple variables have been constructed prior to being supplied to
flexMIRTTM. When used in simulation, Covariates is used to specify the
number of covariates that should be generated as part of the model.

The L2covariates statement is used to tell flexMIRTTM how many of
the covariates supplied in the Covariates should be used as predictors of
the level-2 (Between) latent variables. For example, during calibration when
L2covariates is set to a non-zero value, the first x variables listed in the
Covariates statement will be implemented as predictors of the higher-level
latent variable(s). When used in with a simulation, L2covariates indicates
that the first x simulated covariates will apply to level-2 factors only.

CovariateCorr is used, during simulation, to set the generating correla-
tion value among the simulated covariates. Even when more than 2 covari-
ates are present, CovariateCorr should still be a single value - for simplicity,
flexMIRTTM is will induce only an equicorrelation matrix among covariates.

Although not listed in the previous syntax summary, also specific to non-
BAEM estimation is the Beta(?,?) matrix used in the <Constraints> sec-
tion. This matrix, to be used in conjunction with Free, Fix, Equal, and Value
statements, allows users to have detailed control of which covariates are ap-
plied to a given latent variable and impose constraints upon the estimated
regression coefficients.

6.4. Examples Using MH-RM Estimation
All of the calibration examples presented previously in the manual are able
to be estimated using MH-RM estimation. MH-RM estimation allows for GOF
= Extended; and GOF = Complete; to be called, making some GOF indices
available. When GOF = Complete; is used in conjunction with MH-RM es-
timation, the stochastic theta variant of the Yen-Bock item diagnostic X2

values (e.g., Yen, 1981; Bock, 1960) is reported. However, requests for certain
additional GOF output (the Haberman residuals table, JSI, M2 statistic, etc.)
will be ignored by flexMIRTTM because their behavior, in conjunction with
the MH-RM algorithm, is still under research.
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6.4.1 Confirmatory MIRT Model with Correlated Factors

For a first example, we will refit the confirmatory 4 correlated factors model
applied to the 35-item QOL dataset, originally presented in Example 4-3.

Example 6-1: MH-RM: Confirmatory MIRT Model

1 <Project>
2 Title = "QOL Data";
3 Description= "Items 2-21, 4 Correlated Factors CFA: MH-RM";
4
5 <Options>
6 Mode = Calibration;
7 Algorithm=MHRM;
8 ProposalStd= 0.45;
9 Processors = 4;

10 FactorLoadings = Yes;
11
12 <Groups>
13 %Group1%
14 File ="QOL.DAT";
15 Varnames = v1-v35;
16 Select= v2-v21;
17 Dimensions= 4;
18 Ncats(v2-v21) = 7;
19 Model(v2-v21) = Graded(7);
20
21 <Constraints>
22 Fix(v2-v21),Slope;
23 Free(v2-v5),Slope(1);
24 Free(v6-v9),Slope(2);
25 Free(v10-v15),Slope(3);
26 Free(v16-v21),Slope(4);
27 Free Cov(2,1);
28 Free Cov(3,1);
29 Free Cov(3,2);
30 Free Cov(4,1);
31 Free Cov(4,2);
32 Free Cov(4,3);
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In the <Options> section, we have specified that flexMIRTTM should use
the MH-RM algorithm via Algorithm = MHRM; and are opting to use the
default random seed value to start the draws. In addition, we have set
ProposalStd = 0.45;. This value was adjusted from the default of 1.0 be-
cause a first run of the algorithm was observed to have an acceptance rate
lower than is desirable. As noted earlier, lowering the ProposalStd value will
generally lead to higher acceptance rates. Outside of the <Options> section,
no syntax was changed from the example presented in Chapter 4; the same
model was fit by both the MH-RM and BAEM estimation routines.

Output 6.1: Correlated Four Factor Model Output - Processing Pane Output

MH-RM: Stage I
# 1; AR: 0.44,0.00; Fn: -25561.90
# 2; AR: 0.43,0.00; Fn: -25150.88
# 3; AR: 0.44,0.00; Fn: -24761.94
# 4; AR: 0.41,0.00; Fn: -24337.34
# 5; AR: 0.42,0.00; Fn: -23975.69
# 6; AR: 0.41,0.00; Fn: -23666.61
# 7; AR: 0.41,0.00; Fn: -23338.13
# 8; AR: 0.41,0.00; Fn: -23060.52
# 9; AR: 0.40,0.00; Fn: -22792.52
# 10; AR: 0.41,0.00; Fn: -22552.57
...

MH-RM: Stage II
# 1; AR: 0.20,0.00; Fn: -19978.51
# 2; AR: 0.19,0.00; Fn: -19932.53
# 3; AR: 0.20,0.00; Fn: -19946.00
# 4; AR: 0.20,0.00; Fn: -20066.33
# 5; AR: 0.21,0.00; Fn: -20002.37
...
MH-RM: Stage III
# 1; AR: 0.20,0.00; Fn: -19997.94; Gam: 0.50; W: 0; P#: 12; Chg: 0.1687
# 2; AR: 0.20,0.00; Fn: -20017.97; Gam: 0.33; W: 0; P#: 127; Chg: 0.0631
# 3; AR: 0.21,0.00; Fn: -20011.88; Gam: 0.31; W: 0; P#: 60; Chg: 0.0752
# 4; AR: 0.20,0.00; Fn: -19975.84; Gam: 0.26; W: 0; P#: 41; Chg: 0.0583
# 5; AR: 0.19,0.00; Fn: -20046.35; Gam: 0.24; W: 0; P#: 41; Chg: 0.0413

As noted previously, acceptance rates are printed in the processing pane
for each iteration at all three stages of the MH-RM estimation. Given the
complex structure of the model and the IRT model applied to the items, the
desired goal for our fitted model is to have the reported acceptance rate have an
average value between 0.2 and 0.3. Reading across the output, flexMIRTTM is
reporting the iteration number, the letters “AR” for acceptance rate, followed
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by the level-1 acceptance and then the level-2 acceptance rate. The current
model had only 1 level, so all level-2 values will be 0.00. The value labeled
Fn is an indicator that the program is or is not working towards a converged
solution. While not the log likelihood, it may be interpreted in a similar
fashion, meaning that less negative values indicate a better fit. Examining
the iteration history of the analysis, the acceptance rate starts somewhat high
(0.48) but drops down to the near desired level by the end of Stage I; during
this time, the Fn value also rapidly drops initially and then stabilizes. For all
of Stages II and III, both the acceptance rate and the function value fluctuate,
with the acceptance rate staying within the desired value of 0.2-0.3. While
the output should be closely examined for issues, this pattern of values in the
processing pane is an early indicator that the MH-RM algorithm is working
towards a good solution.

For bookkeeping purposes, the long-term acceptance rate will be reported
in the -irt file with the other previously noted assessments of stability and
convergence.

Output 6.2: Correlated Four Factor Model Output - Loadings, Means and
Variances

Convergence and Numerical Stability
flexMIRT(R) engine status: Normal termination
Number of cycles completed: 1308
Maximum parameter change (P#): 0.00005380 ( 138)
MH-RM latent trait sampler acceptance rate (L1,L2): (0.198,0.000)
First-order test: Convergence criteria satisfied
Condition number of information matrix: 867.5188
Second-order test: Solution is a possible local maximum

Below, we present the same section of the output was that given for Ex-
ample 4-3.

Output 6.3: Correlated Four Factor Model Output - Loadings, Means and
Variances

Factor Loadings for Group 1: Group1
Item Label lambda 1 s.e. lambda 2 s.e. lambda 3 s.e. lambda 4 s.e.

1 v2 0.83 0.03 0.00 ---- 0.00 ---- 0.00 ----
2 v3 0.78 0.03 0.00 ---- 0.00 ---- 0.00 ----
3 v4 0.92 0.01 0.00 ---- 0.00 ---- 0.00 ----
4 v5 0.92 0.01 0.00 ---- 0.00 ---- 0.00 ----
5 v6 0.00 ---- 0.87 0.02 0.00 ---- 0.00 ----
6 v7 0.00 ---- 0.72 0.04 0.00 ---- 0.00 ----
7 v8 0.00 ---- 0.90 0.02 0.00 ---- 0.00 ----
8 v9 0.00 ---- 0.88 0.02 0.00 ---- 0.00 ----
9 v10 0.00 ---- 0.00 ---- 0.66 0.05 0.00 ----
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10 v11 0.00 ---- 0.00 ---- 0.74 0.04 0.00 ----
11 v12 0.00 ---- 0.00 ---- 0.71 0.04 0.00 ----
12 v13 0.00 ---- 0.00 ---- 0.71 0.04 0.00 ----
13 v14 0.00 ---- 0.00 ---- 0.77 0.04 0.00 ----
14 v15 0.00 ---- 0.00 ---- 0.72 0.04 0.00 ----
15 v16 0.00 ---- 0.00 ---- 0.00 ---- 0.77 0.04
16 v17 0.00 ---- 0.00 ---- 0.00 ---- 0.73 0.04
17 v18 0.00 ---- 0.00 ---- 0.00 ---- 0.76 0.04
18 v19 0.00 ---- 0.00 ---- 0.00 ---- 0.84 0.03
19 v20 0.00 ---- 0.00 ---- 0.00 ---- 0.74 0.04
20 v21 0.00 ---- 0.00 ---- 0.00 ---- 0.48 0.06

QOL Data
Items 2-21 Correlated Factors

Group Latent Variable Means:
Group Label P# mu 1 s.e. P# mu 2 s.e. P# mu 3 s.e. P# mu 4 s.e.

1 Group1 0.00 ---- 0.00 ---- 0.00 ---- 0.00 ----

Latent Variable Variance-Covariance Matrix for Group 1: Group1
P# Theta 1 s.e. P# Theta 2 s.e. P# Theta 3 s.e. P# Theta 4 s.e.

1.00 ----
141 0.39 0.03 1.00 ----
142 0.53 0.03 143 0.48 0.03 1.00 ----
144 0.53 0.03 145 0.54 0.03 146 0.67 0.02 1.00 ----

From the excerpt of the output provided, it may again be observed that
the output from the MH-RM is formatted identically to output from BAEM
estimations. Comparing across the two estimation routine results, the param-
eter estimates are nearly identical, indicating that the BAEM and MH-RM
estimation routines are reaching a similar converged solution. In favor of the
MH-RM algorithm, however, is the fact that the total time needed to estimate
the model and generate output was around 4 minutes, compared to the 54
minutes used by the default BAEM.
6.4.2 Exploratory MIRT Model

EFAs are also able to be estimated via MH-RM estimation, making the high-
dimensional nature of such models less of a hindrance, especially with respect
to analysis completion time. Here we re-estimate the target rotation example
from the previous chapter using MH-RM.

Example 6-2: MH-RM: EFA

1 <Project>
2 Title = "QOL Data";
3 Description= "Items 2-9, 2D EFA: MH-RM";
4
5 <Options>
6 Mode = Calibration;
7 Algorithm=MHRM;
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8 RndSeed= 10;
9 ProposalStd= 0.35;

10 Processors = 2;
11 NewThreadModel = Yes;
12 FactorLoadings = Yes;
13 SavePCC = Yes;
14
15 <Groups>
16 %Group1%
17 File ="QOL.DAT";
18 Varnames = v1-v35;
19 Select= v2-v9;
20 Ncats(v2-v9) = 7;
21 Model(v2-v9) = Graded(7);
22 BetaPriors(v2-v9) = 1.5;
23
24 Dimensions= 2;
25 Rotation = Target;
26 Oblique =Yes;
27
28 UnspecifiedTargetElement =9;
29 Target = (
30 9 0,
31 9 0,
32 9 0,
33 9 0,
34 0 9,
35 0 9,
36 0 9,
37 0 9);
38
39 <Constraints>

As can be seen in the example MH-RM syntax, all commands for the EFA
are identical to the previously presented example using BAEM estimation,
with the exception of the MH-RM specific commands in the <Options> section.
As in the previous example, we have set Algorithm to MHRM and adjusted the
ProposalStd value to obtain a desirable acceptance rate. We have also chosen
to specify a different random seed value, primarily to demonstrate the option.
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Output 6.4: Correlated 2D EFAModel Output - Target-rotated Factor Load-
ings

Oblique Target Rotated Loadings for Group 1: Group1
Item Label Target lambda 1 Target lambda 2 Target lambda 3 Target lambda 4

1 v2 ? 0.85 0.00 -0.03 0.00 -0.04 0.00 0.04
2 v3 ? 0.77 0.00 -0.05 0.00 -0.06 0.00 0.01
3 v4 ? 0.94 0.00 0.03 0.00 0.05 0.00 -0.00
4 v5 ? 0.90 0.00 0.04 0.00 0.04 0.00 -0.05
5 v6 0.00 -0.00 ? 0.90 0.00 -0.05 0.00 0.08
6 v7 0.00 -0.00 ? 0.70 0.00 -0.03 0.00 -0.01
7 v8 0.00 0.01 ? 0.90 0.00 0.04 0.00 -0.03
8 v9 0.00 -0.01 ? 0.87 0.00 0.01 0.00 -0.04
9 v10 0.00 -0.07 0.00 -0.05 ? -0.81 0.00 0.05

10 v11 0.00 0.01 0.00 0.04 ? -0.72 0.00 0.02
11 v12 0.00 0.01 0.00 -0.00 ? -0.61 0.00 -0.09
12 v13 0.00 0.04 0.00 0.04 ? -0.64 0.00 -0.01
13 v14 0.00 0.01 0.00 0.01 ? -0.85 0.00 0.06
14 v15 0.00 0.08 0.00 0.04 ? -0.52 0.00 -0.17
15 v16 0.00 0.01 0.00 0.07 0.00 -0.05 ? -0.69
16 v17 0.00 -0.01 0.00 -0.08 0.00 -0.12 ? -0.69
17 v18 0.00 -0.02 0.00 -0.01 0.00 -0.04 ? -0.76
18 v19 0.00 -0.04 0.00 0.02 0.00 0.10 ? -0.95
19 v20 0.00 0.06 0.00 -0.00 0.00 0.06 ? -0.77
20 v21 0.00 0.08 0.00 0.05 0.00 -0.13 ? -0.31

A comparison of the output for the EFAs using target rotation finds, again,
that the MH-RM solution is highly similar to the rotated solution obtained
from BAEM estimation. However, it is not expected that the unrotated load-
ings will be exactly the same across the BAEM and MH-RM estimation and
minor perturbations of the unrotated estimates can results in somewhat differ-
ent rotated solutions. A detailed comparison of the factor patterns and factor
correlations across the two solutions finds that the factors labeled “lambda 1”
and “lambda 2”, across the different estimation methods, are actually reflec-
tions of each other. This can be seen in the similar magnitude of the factor
loadings and factor correlations but reversed signs across the outputs (e.g.,
item v1 in the BAEM output has a lambda 1 rotated loading of -0.86, while
in the MH-RM solution it has a rotated loading of 0.85). Regardless of which
output is used though, the decisions regarding which items should compose the
individual factors in a confirmatory model would be exactly the same. Even
as the rotated solutions are comparable across the two estimation methods,
note that the MH-RM estimation is much more efficient. A similar analysis
using the four factors included in the other EFA and CFA examples with this
data took a total of 90 seconds in MH-RM, compared to well over an hour
needed for the BAEM estimation to complete.
6.4.3 Multilevel Model

With both confirmatory and exploratory factor analysis examples, we have
demonstrated the time benefit that can be obtained through the use of the
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flexMIRTTM MH-RM algorithm when estimating high dimensional models.
The MH-RM as implemented in flexMIRTTM is also able to fit multilevel mod-
els, a feature that, to our knowledge, is not available in any other commercially
available software. We will provide syntax for and output from fitting such a
model. The data used in this example was simulated to have six dichotomous
items with responses from 2000 individuals- these 2000 individuals are nested
within 100 higher-order units, 20 per unit. This type of structure could be seen
if 2000 students from 100 different schools took a brief assessment in which
items were graded as right/wrong.

Example 6-3: MH-RM: Multilevel MIRT Model

1 <Project>
2 Title = "Fit Two-level MIRT Model to Simulated Data";
3 Description= "6 Items, 100 L2 units, 20 respondents within each";
4
5 <Options>
6 Mode = Calibration;
7 Algorithm=MHRM;
8 ProposalStd= 1.0;
9 ProposalStd2= 1.0;

10 Processors = 2;
11 MCsize = 10000;
12
13 <Groups>
14 %Gr%
15 File =File = "simL2.dat";
16 Varnames = v1-v6,l2id;
17 Select= v1-v6;
18 Cluster = l2id;
19 Dimensions= 4;
20 Between= 2;
21 N = 2000;
22 Ncats(v1-v6) = 2;
23 Model(v1-v6) = Nominal(2);
24
25 <Constraints>
26 Fix(v1-v6),Slope; // fix all slopes to begin with
27 Free(v1-v3),Slope(1); // level-2 factor 1
28 Free(v4-v6),Slope(2); // level-2 factor 2
29 Free(v1-v3),Slope(3); // level-1 factor 1
30 Free(v4-v6),Slope(4); // level-1 factor 2
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31
32 Equal Gr,(v1-v3),Slope(1):Gr,(v1-v3),Slope(3);// cross-level equality
33 Equal Gr,(v4-v6),Slope(2):Gr,(v4-v6),Slope(4);
34
35 Free Cov(1,1);
36 Free Cov(2,2);
37 Free Cov(2,1);
38 Free Cov(4,3);

As before, we have told flexMIRTTM to use the MH-RM algorithm and
provided a random number seed. In this example, we are using both the
ProposalStd and ProposalStd2 keywords because we now have two levels
to our model. The adjustments to the ProposalStd will affect the level-1
acceptance rate and adjustments to the ProposalStd2 value will affect the
level-2 acceptance rates. In the <Groups> section we inform flexMIRTTM we
will be fitting a model with 4 latent dimensions (Dimensions = 4;), two of
which will be used as higher-level “between” factors (Between = 2;), and
we then indicate the variable that will supply the level-2 group membership
(Cluster = l2id;). Within the <Constraints> section, we create a structure
that has 2 “between” and 2 “within” factors (via the first group of Fix and
Free statements) and assign items to factors as desired. We also constrain the
slopes across the levels to equality using Equal statements and then allow the
variances of the level-2 factors and the covariance of the within factors and the
covariance of the between factors to be freely estimated. It is worth noting here
that there is nothing outside of the <Options> section that is uniquely related
to the requested MH-RM estimation - this specific model can be estimated
using the default BAEM, albeit with noticeable time loss. Larger models with
more factors would most likely require MH-RM to complete successfully.

We will cover the processing pane output prior to addressing the results
of the estimation. In particular, we will highlight the differences between the
previous example and the processing pane output for a model with a second
level.

Output 6.5: Two-Level MIRT Model - Processing Pane Output

MH-RM: Stage I
# 1; AR: 0.46,0.66; Fn: -12385.84
# 2; AR: 0.47,0.65; Fn: -12167.32
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# 3; AR: 0.47,0.67; Fn: -12072.87
# 4; AR: 0.47,0.61; Fn: -12053.52
# 5; AR: 0.47,0.64; Fn: -11981.70
# 6; AR: 0.47,0.63; Fn: -11900.24
# 7; AR: 0.47,0.66; Fn: -11823.63
# 8; AR: 0.47,0.61; Fn: -11758.62
# 9; AR: 0.47,0.61; Fn: -11684.70
# 10; AR: 0.47,0.65; Fn: -11661.23
# 11; AR: 0.47,0.61; Fn: -11630.73
...
MH-RM: Stage II
# 1; AR: 0.41,0.56; Fn: -10856.40
# 2; AR: 0.41,0.54; Fn: -10979.40
# 3; AR: 0.41,0.57; Fn: -10942.47
# 4; AR: 0.41,0.56; Fn: -10906.11
# 5; AR: 0.41,0.57; Fn: -10924.03
...
MH-RM: Stage III
# 1; AR: 0.41,0.58; Fn: -10949.66; Gam: 0.50; W: 0; P#: 12; Chg: 0.0109
# 2; AR: 0.41,0.53; Fn: -10909.03; Gam: 0.33; W: 0; P#: 12; Chg: 0.0124
# 3; AR: 0.41,0.55; Fn: -10931.30; Gam: 0.31; W: 0; P#: 7; Chg: 0.0156
# 4; AR: 0.41,0.59; Fn: -10941.05; Gam: 0.25; W: 0; P#: 13; Chg: 0.0120

While the general structure of the reported values is the same as the pre-
vious processing pane, rather than “0.00” being consistently repeated as the
second value after the AR: as in the first example, there is now a value that
changes with each iteration - this is the acceptance rate for the second level.
To be concrete, in Iteration 1 of Stage I, the reported level-1 acceptance rate is
0.47 and the level-2 acceptance rate is 0.63. As noted before, the desired range
of acceptance rates is between 0.20 and 0.30 for large or complex models, with
values around 0.50 being acceptable for smaller, less dimensionally complex
models. Output 5.5 presents the parameters for the estimated model. It may
again be observed that the item and group parameter output from the MH-
RM is formatted identically to output from BAEM estimation. Additionally,
it appears that the estimation completed successfully, resulting in reasonable
item and group parameter values and SEs.
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6.4.4 Multilevel Bifactor Model

The multilevel capabilities of flexMIRTTM may be applied to models with fac-
tor structures beyond the “Between” and “Within” factors used in the previous
example. In the following example, we demonstrate MH-RM estimation of a
multilevel IRT model with a bifactor structure applied to the Level-1/“Within”
portion of the model. The data used in this example was simulated to have six
dichotomous items with responses from 2000 individuals- these 2000 individu-
als are nested within 100 higher-order units, 20 per unit. The structure could
be seen if 2000 students from 100 different schools took a brief assessment in
which items were graded as right/wrong and the content of the assessment
was intended to measure general math ability as well specific math subtopics,
such as multiplication and fractions.

Example 6-4: MH-RM: Multilevel Bifactor

1 <Project>
2 Title = "Two-level Bifactor";
3 Description= "6 Items, 100 L2 units, 20 subjects within each";
4
5 <Options>
6 Mode = Calibration;
7 Algorithm=MHRM;
8 ProposalStd= 1.0;
9 ProposalStd2= 2.0;

10 Processors = 4;
11 MCsize = 500;
12 Rndseed = 874;
13 SavePRM = Yes;
14 SaveMCO = Yes;
15
16 <Groups>
17 %Group1%
18 File = "L2bifacsim.dat";
19 Varnames = v1-v6, l2id;
20 Select = v1-v6;
21 Cluster = l2id;
22 Dimensions= 4;
23 Between = 1;
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24 N = 2000;
25 Ncats(v1-v6) = 2;
26 Model(v1-v6) = Graded(2);
27
28 <Constraints>
29 Fix(v1-v6),Slope; // fix all slopes to begin with
30 Free(v1-v6),Slope(1); // between factor
31 Free(v1-v6),Slope(2); // within-general
32 Free(v1-v3),Slope(3); // within-specific 1
33 Free(v4-v6),Slope(4); // within-specific 2

The syntax for this multilevel bifactor model is constructed using “building
blocks” that have been presented in previous examples. To account for the
multilevel aspect of the data, we have specified Cluster = l2id; to provide
flexMIRTTM the variable that contains Level-2 group information as well as
setting Between = 1;, telling flexMIRTTM a multilevel model is intended and
to initiate the multilevel estimation routine. For the bifactor portion of the
model, as with previous bifactor examples, we have set Dimensions to the
appropriate number (4 total = 1 Between factor, 3 Within factors - of which 1
is a general factor and 2 are specific) and then assigned items to factors, based
on the Between and Within portions of the model and the content-related
bifactor structure, in the <Constraints> section.
6.4.5 Fixed Effects Calibration

flexMIRTTM has the ability to perform fixed effects (aka fixed theta) calibra-
tion, in which the user supplies individual theta values, which are fixed, to
be used in calibrating items. This mode of calibration is potentially useful in
field-testing experimental items. Fixed effects calibration is only available in
conjunction with MH-RM estimation. The keyword to induce flexMIRTTM to
perform fixed effects calibration is FixedTheta. FixedTheta is a group-specific
command that is used to set the variable(s) that contain(s) the known, indi-
vidual theta values for that group in the calibration. By implementing fixed
effects calibration in flexMIRTTM as group-specific, it is possible to construct
a calibration in which one group is based on fixed theta values and the other
group is based on random, estimated thetas.

Example 6-5: MH-RM: Fixed Effects Calibration
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1 <Project>
2 Title = "LSAT 6 - Fixed Effects Calibration";
3 Description = "5 Items 1PL N=1000";
4
5 <Options>
6 Mode = Calibration;
7 Algorithm= MHRM;
8 GOF= Extended;
9 Stage1 = 0;

10 Stage2 = 0;
11
12 <Groups>
13 %Group1%
14 File ="lsat6.dat";
15 Varnames = v1-v5, id, theta;
16 Select= v1-v5;
17 N = 1000;
18 Ncats(v1-v5) = 2;
19 Model(v1-v5) = Graded(2);
20 FixedTheta = theta;
21
22 <Constraints>
23 Equal(v1-v5), Slope;

For any group that will be calibrated with fixed ability values, theta is
read-in as part of the datafile for that group. In this example, the theta values
for %Group1% are in the variable theta, the last variable listed in the Varnames
statement. As in earlier examples, because we have provided variables that
are not to be calibrated, we then use a Select statement to specify only those
items which will be subjected to IRT analysis. To provide flexMIRTTM with
the theta values, we use the statement FixedTheta = theta; to tell the pro-
gram the variable that holds the fixed theta values. Although not seen in
this example, FixedTheta works under multidimensionality - currently, the
number of variables listed in FixedTheta = vars ; must match the number
of factors specified via Dimensions for that group.

Of final note in the fixed effects calibration syntax, the Stage1 and Stage2
keywords in the <Options> section, which determine the number of con-
stant gain and stochastic EM, constant gain cycles of the MH-RM estimation
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method, are both set to 0. This is recommended for a majority of fixed effects
calibrations in flexMIRTTM because these cycles do not contribute much in the
fixed effects case and eliminating them improves the time-efficiency of the esti-
mation. However, if flexMIRTTM is unable to reached a converged and stable
solution, Stage1 and Stage2 may be set to non-zero values to help improve
the starting values at Stage 3. Additionally, users may find it necessary to
adjust the MH-RM step values from their defaults when fitting the 3PL item
model with fixed effects calibration - the guessing parameter of this model gen-
erally requires a different step length (adjusted with the Alpha and InitGain
statements) than other parameters and maintaining the default values will of-
ten result in “Feasible Set Violation” warnings in the flexMIRTTM processing
pane and an unconverged or unstable solution.

When FixedTheta is specified and the program can successfully run ,
flexMIRTTM will print in the main output a notification that fixed effects
calibration was performed, prior to reporting the item parameter estimates
for the group. Such a notification is presented in the example program out-
put. Also with regard to the output, please note that for a single-group fixed
effects analysis or a fixed effects analysis that applies to all the groups in a
multiple-group run, the SE of the log-likelihood approximation will be reported
as 0.

Output 6.7: MH-RM: Fixed Effects Calibration Output - Item Parameters

*** Fixed effects calibration in Group 1: Group1

LSAT 6 - Fixed Effects Calibration
5 Items 1PL N=1000

2PL Items for Group 1: Group1
Item Label P# a s.e. P# c s.e. b s.e.

1 v1 6 2.96 0.08 1 3.59 0.14 -1.21 0.06
2 v2 6 2.96 0.08 2 1.35 0.08 -0.45 0.03
3 v3 6 2.96 0.08 3 0.33 0.08 -0.11 0.03
4 v4 6 2.96 0.08 4 1.76 0.09 -0.59 0.03
5 v5 6 2.96 0.08 5 2.79 0.11 -0.94 0.05

6.4.6 Crossed Random Effects Models

When using non-BAEM estimation methods, flexMIRTTM also has the ability
to fit crossed random effects models (e.g., de Boeck, 2008; Van den Noortgate,
De Boeck, & Meulders, 2003). These models are useful in several different
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settings, including when users wish to estimate random, rather than fixed,
item effects, in addition to the typical random effect that is used for observa-
tions/abilities.

Example 6-6: MH-RM: Crossed Random Effects Calibration

1 <Project>
2 Title = "Two-level CFA";
3 Description = "Crossed Random Effect";
4 <Options>
5 Mode = Calibration;
6 Algorithm=MHRM;
7 RndSeed = 10;
8 Processors = 2;
9 ProposalStd= 2.0;

10 ProposalStd2 = 2.0;
11 Stage1 = 2000;
12 Stage2 = 100;
13 MCSize = 1;
14 SaveMCO = Yes;
15 SaveSCO = Yes;
16 Score = EAP;
17 SavePRM = Yes;
18
19 <Groups>
20 %Gr%
21 File ="simL2crossed.dat";
22 Varnames = v1, indiv_ID, item_fam, obs_cnt, theta, delta;
23 Select= v1;
24 Cluster = indiv_ID;
25 Block = item_fam;
26 Crossed = Yes;
27 Ncats(v1) = 2;
28 Model(v1) = Graded(2);
29 Dimensions = 2;
30 Between= 1;
31
32 <Constraints>
33 Value(v1), Intercept, 0.5;
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An examination of the datafile used for this example would find that it is
formatted such that each individual has multiple rows of data (i.e., the data is
in “long” format). To understand the data and syntax, it may also help users
to consider the alternate “wide” format, in which rows are individuals and each
column represents an item - in reformatting the data to the long format, we
could have named the variable “indiv_ID” as row and the “item_fam” variable
could have been named column, so that the variable names and the values re-
flect the data position in the wide format (e.g., row = 4 and column = 2 would
be individual 4’s response to the second item). The <Options> section has
been optimized for this particular analysis (ProposalStd and ProposalStd2
adjusted to obtain desirable acceptance rates, etc.) but the particulars specific
to the crossed random effects model are found in the <Groups> section.

To ensure the data are interpreted correctly, we include the Cluster state-
ment to let flexMIRTTM know these are not independent observations and that
observations with the same indiv_ID/row variable value belong to the same
individual. The Crossed = Yes; statement is used to tell flexMIRTTM that
a crossed random effect model is desired and the Block statement supplies
flexMIRTTM with the variable that that is crossed with individuals, rather
than nested within individuals. In this case, Block = item_fam; is used to tell
flexMIRTTM that a random effect should be used for the item_fam/column
variable. Because a crossed random effects model is, by definition, a multilevel
model, we have specified two total dimensions and stated that one of the two
dimensions is to be treated as a level-2 dimension (Between = 1;), which, as
discussed in previous multilevel examples, means that the first factor will be
assigned as the “between” factor by the program. Output for crossed ran-
dom effects model analyses is in the typical -irt format, discussed in previous
examples.

6.5. Examples Using MCMC Estimation
With the exception of the previous fixed effect calibration run, all of the cali-
bration examples presented previously in the manual, going back even to the
first chapter, are able to be estimated via MCMC estimation. Users should be
aware when selecting an estimation method that all requests for GOF output
will be ignored by flexMIRTTM when using Algorithm= MCMC.

For the first MCMC example, we will use the multilevel, bifactor model
estimated with MH-RM earlier in the chapter. The majority of the syntax (all
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of the <Groups> and <Constraints> sections) are the same as in the previous
syntax, so we will focus on only the MCMC-specific syntax.
6.5.1 Multilevel Bifactor Model

Example 6-7: MCMC: Multilevel Bifactor (excerpt)

1 <Project>
2 Title = "Two-level Bifactor";
3 Description= "6 Items, 100 L2 units, 20 subjects within each";
4
5 <Options>
6 Mode = Calibration;
7 Algorithm=MCMC;
8 BurnIn = 500;
9 Thinning = 10;

10 MaxCycle = 1000;
11
12 ProposalStd= 1.0;
13 ProposalStd2= 2.0;
14 ItemProposalStd= 0.05;
15
16 Processors = 4;
17 Rndseed = 874;
18 SavePRM = Yes;
19 SaveMCO = Yes;

The first point of note is that we have specified Algorithm = MCMC; in
the second line of the <Options>. Given the complexity of the model, we
have increased the length of the burn-in from the default value, decreased the
thinning interval to 10, and have set the maximum number of MCMC cycles
to 1000 (greater than the default of 500). Futher down, we find that the
ProposalStd and ProposalStd2 values, optimized in the previous MH-RM
run of this analysis, have the same values as were used during the MH-RM
estimation. We also find the MCMC-specific command of ItemProposalStd
has been changed from the default value of 0.1 to 0.05.
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6.5.2 Models with Covariates

Our final example for the Alternate Estimation Methods chapter presents an
analysis with covariates. The inclusion of covariates is only available
when calibrating models with non-BAEM algorithms. Note that while
the following example is multilevel, there is no restriction on the models that
may be used with covariates - any item model, unidimensional, multiple group,
and multidimensional models, etc. are all acceptable for use when covariates
are to be included. In the full syntax (available on the flexMIRTTM support
page) it can be seen that MCMC estimation was used. Covariates may also be
used in conjunction with MH-RM estimation. User’s should be aware that
flexMIRTTM expects that covariates will not have missing values
- users should address missingness in all covariate variables (e.g.,
multiple imputation of missing values) during data processing in
their preferred general statistical software. If not resolved prior to
flexMIRTTM analysis, missing values in a covariate variable (e.g., -9)
will be treated as usable/correct covariate values and will negatively
affect the accuracy of estimates.

Example 6-8: MCMC: Multilevel Model with Covariates (excerpt)

15 <Groups>
16 %G%
17 File ="simL2.g1.dat";
18 Varnames = v1-v12, l2id, l1id, theta1-theta6, l2cov, l1cov;
19 CaseID = l1id;
20 Cluster = l2id;
21
22 N v1-v12;
23 Ncats(v1-v5) = 2;
24 Model(v1-v5) = Graded(2);
25
26 Dimensions = 2;
27 Between = 1;
28
29 Covariates = l2cov, l1cov;
30 L2covariates= 1;
31
32 <Constraints>
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33
34 Equal G, (v1-v12), Slope(1): G, (v1-v12), Slope(2);
35 Free G, Cov(1,1);
36
37 Free Beta(1,1);
38 Free Beta(2,2);

The inclusion of covariates takes place in the <Groups> and <Constraints>
sections of the syntax. When covariates are specified, they are group-specific;
our current example has only one group, but multiple-group runs may include
some covariates in one group and more or fewer or no covariates in another.
Further, it is not necessary that the same covariates be used across all groups.

Within the <Groups> we can see that the data file and variable names have
been supplied as usual. We have provided the program with an individual ID
variable via the CaseID statement and a level-2 unit ID with Cluster as in the
previous multilevel example. We select variables and specify item models in the
typical fashion and set up a unidimensional-at-each-level multilevel model with
the Dimensions and Between statements. Finally, we find the Covariates
statement which is used to select variables that will be used as predictors of
the latent traits. All desired covariates are listed in the Covariates statement
separated by commas. To specify that we have a covariate which will be
predicting the Between (rather than the Within factor) of our multilevel model
we set L2covariates to a non-zero value. flexMIRTTM will scan through the
list of variables in the Covariates and select out the first x (the value set
in L2covariates) variables and treat them as covariates of the higher-level
factor(s).

In the <Constraints> section, we set which covariates are predicting which
factors by freeing individual elements of the Beta matrix, which collects all the
regression coefficients of the latent variables on covariates. The Beta matrix
will have the dimensions of (number of latent variables X number of covariates),
with the columns representing the covariates in the order in which they were
supplied in the Covariates statement. For our current example, we want
the variable “l2cov” to predict our Between (level-2) factor and the variable
“l1cov” to predict the Within (level-1) factor of our model. The Beta matrix,
with freely estimated elements represented by 1s, would be:
In our syntax, we have freed the element Beta(1,1) to regress the Between
latent variable on the first covariate from the Covariate statement (which we
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Table 6.1: Beta matrix for group G

Latent Variable Covariate1 Covariate 2
(l2cov) (l1cov)

theta1 (Between) 1 0
theta2 (Within) 0 1

defined as a level-2 covariate in the <Groups> section) and we have freed the
element Beta(2,2), which allows the second covariate listed in the Covariate
statement to predict the Within latent variable.

The output for an analysis including covariates is very similar to the output
from previous examples. As seen in the provided excerpt, flexMIRTTM has in-
cluded additional information regarding the covariates in the summary printed
at the beginning of the *-irt.txt output file. In addition to the typical item
and group parameters, we now have a section of output labeled “Latent Re-
gression Coefficients” that reports the estimated regression coefficients of the
latent variables predicted by the covariates.

Summary of the Data and Dimensions
Missing data code -9

Number of Items 12
Number of L-2 units 100
Number of L-1 units 1000
# Latent Dimensions 2
Between Dimensions 1
Within Dimensions 1

Number of Covariates 2
Level-2 Covariates 1

...

Latent Regression Coefficients:

Group 1: G
Covariate 1 Covariate 2

P# Beta s.e. P# Beta s.e.
Theta 1 26 1.40 0.11 0.00 ----
Theta 2 0.00 ---- 27 0.44 0.04
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CHAPTER 7

Simulation

Simulation studies are common in the IRT literature. Compared to other com-
mercially available IRT software programs (e.g., Bilog, IRTPro, Multilog, and
Parscale), flexMIRTTM is unique in that it facilitates simulations by offering
the user the capability of generating data from all implemented IRT models,
including multidimensional, bifactor, and multilevel models. The command
syntax for generating data has the same basic structure as the model-fitting
syntax. In general, it will typically involve a relatively small amount of code
in the syntax file, leaving the majority of the model settings and generating
parameter values in the parameter file. Alternatively, one can fully specify the
models and generating parameter values directly in the syntax, without using
the parameter file, or using it only as a supplement. Note that a parameter
file saved from a calibration run is compatible for use in simulations. This
provides a convenient mechanism so that the user may conduct simulations
with generating parameters found from empirical data analysis.

7.1. A Syntax-Only Example Using Value Statement
In this example, we will use the syntax file to specify simulation of a data set
consisting of 1000 simulees’ responses to 4 graded items, each scored with 3 cat-
egories. The generating parameter values are specified in the <Constraints>
section. In simulation mode, the Value statement can be used to specify
generating parameters, as is done in the following example.
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Example 7-1: Simulation - Graded Model Syntax Only

1 <Project>
2 Title = "Simulate Data";
3 Description= "4 Items Graded Syntax Only";
4
5 <Options>
6 Mode = Simulation;
7 Rndseed = 7474;
8
9 <Groups>

10 %G%
11 File ="sim1b.dat";
12 Varnames = v1-v4;
13 N = 1000;
14 Model(v1-v42) = Graded(3);
15
16 <Constraints>
17 Value(v1),Slope,0.7;
18 Value(v2),Slope,1.0;
19 Value(v3),Slope,1.2;
20 Value(v4),Slope,1.5;
21 Value(v1,v2),Intercept(1),2.0;
22 Value(v1,v2),Intercept(2),1.0;
23 Value(v3,v4),Intercept(1),0.0;
24 Value(v3,v4),Intercept(2),-1.0;

In the <Options> section, flexMIRTTM is set to run in Simulation mode.
When this is case, a random number seed must be supplied via the Rndseed
statement. The group specification remains the same as in calibration runs.
In this case, the File statement instructs flexMIRTTM to save the simulated
item responses to “sim1a.dat”. The variables are named and the total number
of simulees is set to 1000. The Model statement sets the generating IRT model
to the graded response model with 3 categories. Next, in the <Constraints>
section, the generating parameter values are set. For instance, the first con-
straint says that the value of the slope parameter for item v1 should be set to
0.7. The 5th constraint specifies that the first intercept term for item v1 and
v2 should be equal to 2.0. In a single group, the group name can be omitted, so

114



Value (v1), Slope,0.7; and Value G,(v1), Slope,0.7; would have the
same effect. For multiple group simulations, the group name must be specified
in each Value statement.

Output 7.1: Simulation Control Output - Graded Model Syntax Only

...
Summary of the Data and Dimensions

Missing data code -9
Number of Items 4
Number of Cases 1000

# Latent Dimensions 1

Item Categories Model
1 3 Graded
2 3 Graded
3 3 Graded
4 3 Graded

Miscellaneous Control Values
Random number seed: 7474
...
Graded Items for Group 1: G

Item a c 1 c 2
1 0.70 2.00 1.00
2 1.00 2.00 1.00
3 1.20 0.00 -1.00
4 1.50 0.00 -1.00

Graded Items for Group 1: G
Item a b 1 b 2

1 0.70 -2.86 -1.43
2 1.00 -2.00 -1.00
3 1.20 -0.00 0.83
4 1.50 -0.00 0.67

...
Group Parameter Estimates:

Group Label mu s2 sd
1 G 0.00 1.00 1.00

The first part of the simulation control output echoes the user-supplied
specifications, (e.g. number of items, number of simulees, the number of cate-
gories, IRT model types, and the random number seed). The generating item
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parameters are then printed. One can see that the syntax statements are cor-
rectly interpreted. When everything is set up correctly, a simulated data set is
generated and saved. The first and last three rows of this data set are shown
below. The first 4 columns are the item responses (in 3 categories coded as 0,
1, and 2). Column 5 is a case ID column. Column 6 contains the generating
theta value for that simulee.

Output 7.2: Simulated Data Set - Graded Model Syntax Only

2 2 0 2 0 1.69411
0 0 0 0 1 -1.33926
2 2 0 0 2 -0.0399422
...
2 0 0 0 997 0.0584387
2 2 0 1 998 -0.672594
2 2 0 2 999 -0.203111

As noted previously, simulations may either be conducted by using Value
statements to provide generating parameter values or through the use of a
parameter file. To demonstrate this point, we will now generate data with the
parameters values just used, but supply them to flexMIRTTM via a parameter
file.

7.2. The First Example Redone Using Parameter File

Example 7-2: Simulation - Graded Model Using PRM File

1 <Project>
2 Title = "Simulate Data";
3 Description= "4 Items Graded Use PRM File";
4
5 <Options>
6 Mode = Simulation;
7 Rndseed = 7474;
8 ReadPRMFile = "sim1b-prm.txt";
9

10 <Groups>
11 %G%
12 File ="sim1b.dat";
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13 Varnames = v1-v4;
14 N = 1000;
15
16 <Constraints>

The ReadPrmFile statement is invoked to read the parameter file. The group
specification only contains the file name, the variable names, and the number
of simulees. Note that the <Constraints> section is empty because the values
of the generating parameters are set in the parameter file. The contents of
parameter file are shown in Table 6.1.

Table 7.1: Simulation - Graded Model PRM File Content

1 v2 1 1 2 3 2 1 1.0
1 v3 1 1 2 3 0 -1 1.2
1 v1 1 1 2 3 2 1 0.7
1 v4 1 1 2 3 0 -1 1.5

The parameter file has 4 rows, corresponding to the 4 items. Take row 1
as an example. The entry in the first column of 1 specifies that this is a row
containing item parameters. This is a predefined option. The other option is
0, which corresponds to group specifications. The second column specifies the
variable name. Note that the items are not ordered as v1 to v4, but there is
no problem since the items are checked against the list of variable names in
the syntax file and matched automatically. Column 3 indicates that this item
belongs to group 1. Column 4 indicates the number of factors - in this case,
the model is unidimensional. The next two columns, taken together, set the
IRT model to graded (type 2 in column 5) with 3 categories (column 6). Then
the item intercepts (from the intercept corresponding to the lowest category
to the highest category) and the item slope are specified for each item. The
resulting simulated data set is exactly the same as the previous example.
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Output 7.3: Simulated Data Set - Graded Model Using PRM File

2 2 0 2 0 1.69411
0 0 0 0 1 -1.33926
2 2 0 0 2 -0.0399422
...
2 0 0 0 997 0.0584387
2 2 0 1 998 -0.672594
2 2 0 2 999 -0.203111

7.3. The Parameter File Layout
Although the progression of columns of the parameter file must proceed in
a prescribed fashion, the general format of the file is plain ASCII, in which
delimiters may be spaces or tabs. Column headers are not permitted, which is
why the order of values in the columns must follow a predetermined progres-
sion. For arranging the values in the parameter file, we have found it easiest
to use a spreadsheet program (e.g., Excel) to initially set up the entries and,
when complete, export/paste the values into the flat ASCII text editor. As
noted earlier, there are set options from which the user must select for certain
columns. Table 7.2 provides a summary of these options.

Table 7.2: Key Codes for Columns With Set Options

Column 1 Column 5 - Items Column 5 - Groups Select Columns
(Entry Type) (IRT Model) (Prior Type) (Nominal Contrast Type)

Value Meaning Value Meaning Value Meaning Value Meaning
0 Group 1 3PL 0 Normal Prior 0 Trend
1 Item 2 Graded 1 EH/KDE Prior 1 Identity

3 Nominal 2 DCM probs 2 User-specified

As indicated in Table 7.2, the first column of the parameter file indicates
whether the information to be supplied across the row refers to an item or a
group. The information that goes into the various subsequent columns differs
somewhat, depending on whether item or group is indicated in column 1, so
the arrangement for these two parts of the parameter file will be discussed
separately.
7.3.1 Column Progression for Groups

With a 0 in the first column of the parameter file, flexMIRTTM will interpret
all subsequent information on the line as applicable to a group. The 2nd
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column is used to supply a group label, which should correspond to the label
provided in the syntax file. The third column indicates the group number for
the given group, (i.e., 1 if it is the first group listed in the syntax file, 2 if it
belongs to the second group, etc.). Column 4 requires the user to specify the
number of latent variables in the generating model, specific to the group just
specified. The 5th column is reserved for indicating the type of population
distribution (prior) to be applied to the latent trait. The acceptable values
are 0 for normal and 1 for empirical histogram (see Table 7.2). If a normal
prior is chosen, the subsequent columns will supply the latent factor mean(s)
and then (co)variance(s).

The latent factor mean values are entered in order, with the mean of factor
1 listed first, followed by mean 2, mean 3 and so on. For specifying (co)variance
values, the unique elements of the latent factor variance/covariance matrix are
entered in row-major order. To demonstrate this point, suppose the following
4× 4 factor covariance matrix is to be submitted to flexMIRTTM:

f1 f2 f3 f4
f1 1 2 4 7
f2 2 3 5 8
f3 4 5 6 9
f4 7 8 9 10

The progression of variance/covariance values entered in the parameter file
should be

1 2 3 4 5 6 7 8 9 10

If an empirical histogram prior is chosen, the user must supply additional
information. Column 6 specifies the total number of quadrature points by
which the histogram is defined and Column 7 requires a maximum value for the
quadrature points, which determines the range over which the points are to be
distributed. Similar to specifying Quadrature or FisherInf in the <Options>
section, the quadrature points are spread symmetrically around zero, with the
minimum and maximum value determined by the entry in Column 7. After
the EH specification, the mean(s) and unique element(s) in the covariance
matrix are listed in the subsequent columns, following the same progression
of entries just covered. The histogram itself is supplied next. For instance,
if the entry in Column 6 is 101 and Column 7 is 5, then 101 points will be
evenly spaced over the range of -5 to 5. The user must then supply, as the last
101 entries of this particular row, the 101 ordinates of the empirical histogram
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(i.e., the heights of the histogram at the 101 quadrature points). An example
of simulating data with EH priors will be presented later.

The ordering of means and then (co)variance values is slightly changed
when covariates are to be simulated as well. Following the mean values for
all latent factors, the Beta matrix values (that is, the generating regression
coefficients for the covariate(s)) are supplied in row-major order prior to the
(co)variance value entries.
7.3.2 Column Progression for Items

The first four columns of a row supplying item level information have the same
generic content as groups. First, a value indicating item information will follow
(i.e., 1) is given in Column 1, then a variable name is assigned in Column 2.
This name must correspond to a variable in the Varnames statement in the
command file. Column 3 assigns the item to a group number, and Column 4
provides the number of latent factors for that group. At this point (Column
5), the meaning of column entries differs from what was covered in the groups
subsection. The generating IRT model for the item is set in Column 5, with
models coded as indicated in Table 7.2. For instance, an item to be generated
using graded model parameters would have a 2 in the 5th column. Column 6
supplies the number of possible response categories for the item.

Once an IRT model is chosen, the item parameters must be entered, one
value per column. The progression of expected parameters varies slightly de-
pending on the which IRT model was selected in Column 5. If the 3PL model
was selected, the guessing parameter (in logit metric) is given in Column 7,
followed by the intercept parameter, and then all discrimination/slope param-
eter values (if there is more than one factor). If the Graded model is selected
in Column 5, the expected order for parameter values is the ordered inter-
cept parameters (starting at the lowest category’s in Column 7 and going up)
followed by the discrimination parameter(s).

With respect to the Nominal model, the parameters are entered in the
reparameterized form detailed in Thissen et al. (2010). The type of scoring
contrast is given in Column 7, using one of the code values given in Table 7.2.
If Trend (0) or Identity (1) contrasts are specified in Column 7, the scoring
function contrast values (of which there are the number of categories minus
one) must be supplied starting from Column 8. After those m − 1 values
are given, the slope parameter(s) are entered. Immediately after the slope
parameter, the next column (the column number of which will vary depending
on the number of categories and slopes used) is used to indicate the contrast
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type for the intercept parameters. Again, if Trend or Identity contrasts are
selected, the columns immediately following the contrast selection contain the
appropriate number of intercept parameter values (again always equal to the
number of categories minus one).

In the rare occasion that user-supplied contrasts are selected for either
the scoring functions or the intercept parameters, it is necessary to supply
the contrast coefficient values as well as the contrasts. In other words, the
built-in contrasts are automatically computed, but any user-defined contrasts
need to be entered into the program. The contrast coefficients are given after
the contrast selection column (e.g., Column 7) but before the actual contrast
values. The contrast coefficients of a user-supplied contrast matrix are ex-
pected to be in row major order. That is, for a contrast matrix applied to
nominal items with k categories, the coefficients from that k× (k− 1) matrix
would be entered in the following order: T (1, 1),T (1, 2),T (1, 3), . . . ,T (1, k−
1),T (2, 1), . . . ,T (2, k− 1), . . . ,T (k, k− 1).

7.4. A 3PL Model Simulation Example
In this example, we will simulate item responses to 10 3PL items for a single
group of 500 simulees. The latent trait distribution is standard normal.

Example 7-3: Simulation - 3PL Model Normal Population

1 <Project>
2 Title = "Fit Model";
3 Description= "10 Items 3PL N=500 Normal Priors";
4
5 <Options>
6 Mode = Simulation;
7 Rndseed = 1;
8 ReadPRMFile = "genparams.txt";
9 <Groups>

10 %Group1%
11 File = "sim2.dat";
12 Header = Yes;
13 Varnames = v1-v10;
14 N = 500;
15
16 <Constraints>
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As always, the command file begins with the <Project> section where a ti-
tle and general description are provided. In the <Options> section we have set
the engine mode to Simulation and, as required when Mode = Simulation;
provided a seed value for the random number generator which will be used
to create the data. Because we are not using Value statements, we have also
provided a file name where item and group parameters may be found.

In the <Groups> section, we label our group and use the File statement to
provide a name for file where the data will be stored once generated. We want
to simulate data for 10 variables so we provide labels for 10 variable names
with the Varnames statement. We have also included the optional statement
Header = Yes; which will write column labels/a header row into the datafile
that is being created. Finally, using N, we specify the number of cases we want
generated. The variable and group labels provided here must match those
provided in the second column of the parameter file. As may be seen here,
and as mentioned previously, the syntax command file is only used to set up
the very basic structure of the analysis and the specifics are left to be input
through the parameter file, to which we will now turn our attention.

As covered in Section 6.1, the actual parameter file to be submitted to
flexMIRTTM (Ex1genparms.txt, in this case) may not contain a header row/
column names but they are included in Table 7.3 for illustrative purposes only.
In this parameter file, we have arranged all the item specifications first and
the group parameters are in the bottom row. This is completely arbitrary and
the rows of the file may be arranged in any way the user wishes. However, the
columns must follow the arrangement previously detailed. Reading across for
the first item, the 1 in the first column denotes that the values to follow refer to
an item. We then provide a variable name, v1, and assign this item to the first
group (which is the only group in this example). The next column indicates
that there is 1 latent factor in the model and the subsequent column (Column
5) says that we will be providing parameters for the 3PL model (indicated
by the 1). The 6th column value tells flexMIRTTM that the item will have
two response options. Based on the number of factors, the IRT model, and
the number of response categories, we now supply the appropriate number of
item parameters, in this case 3 parameters (1 for the lower asymptote, 1 for
the intercept, and 1 for the slope). The order of parameters values must be
guessing (in the logit metric), intercept (in the c = −a ∗ b metric, where b is
the difficulty/threshold), and then the slope parameter (a).
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Table 7.3: Simulation - 3PL Parameter File with Labeled Columns

Type Label Group # # Factors Model # Cat logit g c a

1 v1 1 1 1 2 -1.34 -0.69 1.30
1 v2 1 1 1 2 -0.97 -1.30 1.41
1 v3 1 1 1 2 -1.64 0.42 1.05
1 v4 1 1 1 2 -2.10 0.40 1.26
1 v5 1 1 1 2 -1.59 -1.35 2.43
1 v6 1 1 1 2 -1.72 -0.56 1.67
1 v7 1 1 1 2 -1.13 -0.26 3.12
1 v8 1 1 1 2 -1.71 -1.56 2.09
1 v9 1 1 1 2 -2.79 0.73 1.17
1 v10 1 1 1 2 -1.66 -0.14 1.10

Type Label Group # # Factors Prior Type Mean Var
0 Group1 1 1 0 0.00 1.00

The final row of the file is used to describe the group. The first 0 indicates
that the row is describing a group. The second column provides the group a
label, Group1, which should correspond to the label provided in the command
file. We assign the Group1 label to the first group by the 1 in the 3rd column,
and specify that a unidimensional model will be generated, by indicating 1
factor in the 4th column. As noted in Table 7.2, the fifth column of a Group
line indicates the type of prior distribution to be applied (in this case a normal
prior, signified by the 0). After a normal prior is indicated, a group mean of
0.00 and a variance of 1.00 are supplied.

7.5. Simulating Data with Non-Normal Theta Distribu-
tions

In this example, we will cover data simulated from models with non-normal
population distribution. This is accomplished using the empirical histograms
method (previously used in Calibration Example 3-2). The empirical his-
togram prior may only be used for unidimensional or bifactor models (testlet
response model included), as previously noted in the discussion of Example
3-2.
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Example 7-4: Simulation - Empirical Histogram Prior

1 <Project>
2 Title = "Simulate Data";
3 Description= "10 Items 3PL N=500 Non-Normal Priors";
4
5 <Options>
6 Mode = Simulation;
7 Rndseed = 1;
8 ReadPRMFile = "EHgenparams.txt";
9 Quadrature = 121, 6.0;

10
11 <Groups>
12 %Group1%
13 File ="sim2.dat";
14 Varnames = v1-v10;
15 N = 500;
16 EmpHist = Yes;
17
18 <Constraints>

The command file for this example is substantively the same as the previ-
ous, although we have changed the parameter file name. The added feature
here is that a non-normal distribution will be specified in the generating pa-
rameter file (EHgenparams.txt). This change only substantially effects that
values entered into the Group row of the parameter file. However, because
we are using the empirical histogram parameter file, we must also supply a
Quadrature command in our syntax file that matches the number and range
of points used to construct the empirical histogram.

An examination of the generating parameter file will find that the 5th
column of the Group row been changed from the value of 0, seen in Table
7.3, to a value of 1. As noted in Table 7.2, this indicates that an empirical
histogram prior will be used. The 6th column then provides the number of
points to be used in constructing the histogram (121) and the next value
indicates the range over which the points are spread (from -6 to 6 here, as
indicated by the value of 6 in the 7th column of the Group row). Following
the specification of the empirical histogram parameters, the latent variable
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mean(s) and covariances are listed. After all means and covariances are listed,
the heights of the empirical histogram are provided. For our current example,
we need to provide 121 values, per the entry in Column 6. Figure 7.1 provides
a graphical display of the empirical histogram provided in the parameter file,
to demonstrate the extent of non-normality.

Figure 7.1: Empirical Histogram From EHgenparams.txt
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7.6. Simulating Bifactor Model Data
We will be using item parameters obtained from our bifactor analysis in Ex-
ample 4-5 to simulate items with a bifactor structure from the 2PL model. As
noted previously, when not employing Value statements, only the very basic
structure of the analysis is supplied in the simulation syntax file and the de-
tails of the model are left to the parameter file. Table 7.4 presents a labeled
version of the parameter file (QOLbifac-prm.txt) for illustrative purposes.

Example 7-5: Simulation - Bifactor Structure From Existing Parameter File

1 <Project>
2 Title = "QOL Example";
3 Description= "Simulation From PRM File 35 2PL Items Bifactor";
4
5 <Options>
6 Mode = Simulation;
7 ReadPRMfile= "QOLbifac-prm.txt";
8 Rndseed = 7474;
9

10 <Groups>
11 %Group1%
12 File = "QOLbifacsim.DAT";
13 Varnames = v1- v35;
14 Dimensions = 8;
15 Primary = 1;
16 N = 1000;
17
18 <Constraints>

Per the previous discussion of the parameter file arrangement, the first
column is for entering whether the values to follow on the row refer to an item
or a group, with 1 denoting items and 0 denoting groups. We will now follow
the first line across, discussing the columns in turn. The second supplies a
variable name for the line and the third column specifies to which group the
item belongs. In this case, there is only one group, so the entire column
consists of 1s. In Column 4, we specify that there are 8 factors in the model
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Table 7.4: Labeled Parameter File for Bifactor Model Simulation

Type Label Grp# #Fac Model #Cat c a1 a2 a3 a4 a5 a6 a7 a8
1 v1 1 8 2 2 2.13 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 v2 1 8 2 2 3.78 2.31 2.51 0.00 0.00 0.00 0.00 0.00 0.00
1 v3 1 8 2 2 1.69 1.62 1.42 0.00 0.00 0.00 0.00 0.00 0.00
1 v4 1 8 2 2 3.76 3.86 4.89 0.00 0.00 0.00 0.00 0.00 0.00
1 v5 1 8 2 2 2.87 2.77 3.08 0.00 0.00 0.00 0.00 0.00 0.00
1 v6 1 8 2 2 0.86 2.77 0.00 3.20 0.00 0.00 0.00 0.00 0.00
1 v7 1 8 2 2 1.38 1.38 0.00 1.50 0.00 0.00 0.00 0.00 0.00
1 v8 1 8 2 2 0.49 2.60 0.00 2.86 0.00 0.00 0.00 0.00 0.00
1 v9 1 8 2 2 0.30 1.78 0.00 1.97 0.00 0.00 0.00 0.00 0.00
1 v10 1 8 2 2 3.09 1.91 0.00 0.00 1.74 0.00 0.00 0.00 0.00
1 v11 1 8 2 2 2.57 1.42 0.00 0.00 0.71 0.00 0.00 0.00 0.00
1 v12 1 8 2 2 1.88 1.40 0.00 0.00 0.72 0.00 0.00 0.00 0.00
1 v13 1 8 2 2 2.30 1.57 0.00 0.00 0.13 0.00 0.00 0.00 0.00
1 v14 1 8 2 2 5.16 4.02 0.00 0.00 3.80 0.00 0.00 0.00 0.00
1 v15 1 8 2 2 2.09 2.49 0.00 0.00 0.66 0.00 0.00 0.00 0.00
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 v34 1 8 2 2 2.95 1.67 0.00 0.00 0.00 0.00 0.00 0.00 1.30
1 v35 1 8 2 2 3.22 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.44

Type Label Grp# #Fac Prior µ1 · · · µ8 σ11 σ21 σ22 σ31 σ32 σ33 · · ·
0 Group1 1 8 0 0.00 · · · 0.00 1.00 0.00 1.00 0.00 0.00 1.00 · · ·

and Columns 5 and 6, respectively, tell flexMIRTTM that the IRT model is the
graded model (type 2) with two possible response categories. The combination
of the these three values informs flexMIRTTM to expect 9 item parameters,
one intercept and 8 slopes. Scanning down the columns of slope parameters,
it becomes clear that the a1 column is for the general factor, with all item
loading onto it, and the next 7 columns represent the group-specific factors,
onto which only a subset of items load.

Turning now to the group specification in the bottom row of the table,
the first column signifies that this line is supplying group information, due
the value of 0. Labeling and assigning the group number and the number of
factors in the model, all similar to what was done in the item rows, comes
next. In Column 5, we enter information regarding the type of population
distribution prior. We have chosen normal priors (via the option 0). Because
we have chosen normal priors, all that is left to specify are the latent variable
means for each of the eight factors, followed by the unique elements of the
covariance matrix.

7.7. Simulating Group Differences
As seen in the multiple group calibration examples, each group has its own
self-contained subsection within the <Groups> section. While this can lead to
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some redundancy in the naming of variables, etc., it does all for a great deal of
flexibility across groups. For example, flexMIRTTM does not require that the
number of items, the number of categories, the kind of IRT models employed,
or the number of latent dimensions remains the same across groups. One
may specify one group to have a normal prior distribution and use empirical
histograms in the other group. In particular, one may even set up a multilevel
model for one group and a single level model for the other.

The current example simulates group differences in both population means
and variances as well as item parameters. Each group has 10 items. Group
1 has mean 0, variance 1. Group 2 has the same variance but a mean at 0.2.
Group 3 has a mean of -0.2 and variance of 1.5. The items are for the most
part 3PL items, with the exception of Item 1 in Group 3. The lower asymptote
parameter is set to 0 for that item, making it a 2PL item. Also, the intercept
parameter for Item 9 in Group 2 is chosen such that its threshold value is 0.5
standard deviation higher than the corresponding items in Groups 1 and 3.

Example 7-6: Simulation - DIF and Group Mean Differences

1 <Project>
2 Title = "Simulate Data";
3 Description= "3 Groups 10 Items N=1000 (mostly) 3PLs
4 Group 1 N( 0.0,1.0), Group 2 N( 0.2,1.0), Group 3 N(-0.2,1.5)
5 Item 9 in Group 2 has 0.5 higher threshold than the
6 corresponding item in Groups 1 and 3.
7 Item 1 in Group 3 is a 2PL item.";
8
9 <Options>

10 Mode = Simulation;
11 Rndseed = 7474;
12 ReadPRMFile = "genparams.txt";
13
14 <Groups>
15 %Group1%
16 File ="group1.dat";
17 Varnames = v1-v10;
18 N = 1000;
19 %Group2%
20 File ="group2.dat";

128



21 Varnames = v1-v10;
22 N = 1000;
23 %Group3%
24 File ="group3.dat";
25 Varnames = v1-v10;
26 N = 1000;
27
28 <Constraints>

The <Options> section remains substantially unchanged from previous ex-
amples. Within the <Groups> section, we now have labels and specifications
for the three distinct groups for which we wish to generate data. Following
the other examples, the details of the simulation are set up in the parameter
file (genparams.txt). The contents of the parameter file (presented, in part, in
Table 7.7) are now discussed.

Table 7.5: Simulating DIF and Group Mean Differences - Parameter Values

1 v1 1 1 1 2 -1.33972 -0.68782 1.301362
1 v2 1 1 1 2 -0.96814 -1.29641 1.409536
...

...
...

...
...

...
...

...
...

1 v9 1 1 1 2 -2.79306 0.730972 1.172468
1 v10 1 1 1 2 -1.65629 -0.14263 1.102673
1 v1 2 1 1 2 -1.33972 -0.68782 1.301362
1 v2 2 1 1 2 -0.96814 -1.29641 1.409536
...

...
...

...
...

...
...

...
...

1 v9 2 1 1 2 -2.79306 0.144738 1.172468
1 v10 2 1 1 2 -1.65629 -0.14263 1.102673
1 v1 3 1 2 2 -0.68782 1.301362
1 v2 3 1 1 2 -0.96814 -1.29641 1.409536
...

...
...

...
...

...
...

...
...

1 v9 3 1 1 2 -2.79306 0.730972 1.172468
1 v10 3 1 1 2 -1.65629 -0.14263 1.102673
0 Group1 1 1 0 0 1
0 Group2 2 1 0 0.2 1
0 Group3 3 1 0 -0.2 1.5

As before, the first column still indicates whether the row refers to an item
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or a group, and the second column provides a label. The first indication that
this is a multiple group problem appears in Column 3, which is the column
designated for assigning the row (item or group) to a specific group defined in
the syntax. In previous examples, with only one group, all rows displayed a 1
in this column, where now the first 10 items (4 of which are displayed in the
table) have 1s, the next 10 rows have 2s and so on.

With respect to the differences across the groups, as noted earlier, Item
v1 in group 3 is a 2PL item, so it is specified as a graded model with two
response categories, while item v1 in both Groups 1 and 2 are 3PL items.
DIF also occurs for Item v9. The same generating IRT model is used and
the guessing and discrimination parameter values are identical across groups,
but in Group 2, the difficulty parameter value is 0.5 higher (in the b metric)
than the value in Groups 1 and 3. Mean differences among the groups are also
generated. The last 3 rows refer to Groups 1 through 3, respectively. After
labeling, specifying group membership, and declaring the number of factors,
normal population distributions are chosen for all groups (via the 0s in the 5
column). The sixth column provides the population means and the seventh
column provides population variances.

7.8. Simulating a Multilevel Bifactor Model with Covari-
ates

Our final example will illustrate how one may simulate item responses accord-
ing to a multilevel bifactor model in two groups with covariates at either both
or only one level of analysis. We will generate data for 12 dichotomously scored
graded items in two separate groups.

Example 7-7: Simulation - Multilevel, Multiple Group Model with Bifactor
Structure and Covariates

1 <Project>
2 Title = "Two-level Bifactor Model (Two Groups)";
3 Description= "12 Items: 1 L2 factor,
4 5 L1 factors with 1 General, 4 Specific,
5 100 L2 units, 10 respondents within each";
6
7 <Options>
8 Mode = Simulation;
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9 Rndseed = 7471;
10 ReadPRMFile = "MGsimL2 covariates-prm.txt";
11
12 <Groups>
13 %G1%
14 File = "simL2.g1.dat";
15 Varnames = v1-v12;
16 Dimensions = 6;
17 Primary = 2;
18 Between = 1;
19 N = 1000;
20 Nlevel2 = 100;
21 Covariates = 2;
22 L2covariates = 1;
23 CovariateCorr = 0.4;
24
25 %G2%
26 File= "simL2.g2.dat";
27 Varnames = v1-v12;
28 Dimensions = 6;
29 Primary = 2;
30 Between = 1;
31 N = 1000;
32 Nlevel2 = 100;
33 Covariates = 1;
34
35 <Constraints>

Skipping down to the <Groups> section and focusing on the first group’s
subsection, we have provided the data file name, variable labels, and the total
number of dimensions of the generating model with the Dimensions state-
ment. The command Between = 1; indicates that the model has one level-2
(between) latent variable and 5 level-1 (within) latent variables. The Nlevel2
command is required when simulating multilevel data and determines the num-
ber of level-2 units (e.g., schools in which students are nested). In this case, the
number of level-2 units is equal to 100. In conjunction with the total number
of level-1 cases specified in the N = 1000; line, one can deduce that the num-
ber of level-1 units within each level-2 unit is equal to 10. flexMIRTTM will
distribute the total sample size as evenly as possible across the level-2 units.
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If the sample size value is not a multiple of the number of level-2 units, the
“remainder” observations will be added to the final level-2 unit. Note that
while the specifications for the second group are the same as those in the first
group in this example, it is by no means a requirement. As mentioned earlier,
the number of items, type of IRT model, and the latent dimensionality can be
different across groups.

In addition to the multiple levels, we have also requested that the model
be generated with covariates. In group G1, we have specified that two covari-
ates should be generated (Covariates = 2; and one of the covariates should
predict the level-2 (Between) factor (L2covariates). We have also set the cor-
relation among the 2 covariates to use a generating values of 0.4. In the second
group, we have specified a simpler covariate pattern, in which there is just one
level-1 covariate to be generated. When generating data with covariates, the
ordering of values in the parameter file for group rows are slightly changed from
the typical order discussed previously. We present the first several columns of
the parameter file to be used in the above simulation.

Table 7.6: Parameter file excerpt: Simulating multiple groups with multilevel
covariates

0 G1 1 6 0 0 0 0 0 0 0 1.3 0 0 0.5 0 0 0 0 0 0 0 0 0.5 0
0 G2 2 6 0 0.2 0 0 0 0 0 0 0.4 0 0 0 0 0.25 0 1 0 0 1 0 0

We previously detailed the ordering of the first several columns of lines
related to groups and the meaning of these columns has not changed. We still
see a 0 in the first column, indicating the line refers to a group, the group
label, the group number, the number of factors, and a 0 indicator telling
flexMIRTTM to use a normal prior for the latent variables. Again, as with
previous parameter files, the means of all the factors (in this example 6) are
then presented. In group G1 the means of all factors are set at zero; in the
second group, the first factor (which will be the Between (level-2) factor is set
at 0.2 and the following 5 values set the means of all the level-1 factors in the
group to 0.

In a simulation without covariates, the next set of entries would be the
variance-covariance matrix values. However, for this example we are using
covariates in both groups, so we must first supply the entries of the Beta
matrix, which defines the regression coefficients of each latent variable on the
covariates. For group 1, the Beta matrix of 6 latent variables by 2 covariates
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we want to simulate from is detailed in the following table.

Table 7.7: Beta matrix with generating regression coefficient values for group
G1

Latent Variable Covariate1 Covariate 2
theta1 1.3 0
theta2 0 0.5
theta3 0 0
theta4 0 0
theta5 0 0
theta6 0 0
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Entries in the table are regression coefficients of the latent variables on
the covariates. Referring to the syntax, we see that in group G1 we specified
one level-2 covariate, which we have set at a regression coefficient of 1.3 in
the table, which leaves one level-1 covariate. This level-1 covariate is set as
a predictor of general factor of the level-1 model (theta 2) with a regression
coefficient of 0.5. Comparing the table to the entries of the parameter file, we
can see that the rows of the Beta matrix have been “unstacked” and the 12
regression coefficients from the table (including all 0 entries) are simply listed
by row. After the last beta value has been specified, we then see the start of
the variance-covariance entries, with the variance of the first factor in group
G1 set to 0.5 and the covariance of factor 2 and factor 1 set at 0.

For the second group, in the syntax we stated that there is only 1 covariate
for this group and, as L2covariates has not been changed from its default
of 0, the covariate will apply to the level-1 latent variables. The group G2
Beta matrix, which will be 6 latent variables by 1 covariate, is specified with
the covariate predicting only the general factor of the level-1 model, with a
regression coefficient of 0.4. Again, the rows of the beta matrix have been
“unstacked” and the values are listed across in the parameter file. After the
6 beta matrix entries, the next column starts the variance-covariance matrix
for group G2 with the variance of the Between factor set at 0.25.

134



Output 7.4: Simulation Control Output for Multilevel Bifactor Model

Two-level Bifactor Model (Two Groups)
12 Items: 1 L2 factor, 5 L1 factors with 1 General, 4 Specific,
100 L2 units, 10 respondents within each

Summary of the Data and Dimensions
Group G1 G2

Missing data code -9 -9
Number of Items 12 12

Number of L-2 Units 100 100
Number of L-1 Units 1000 1000
# Latent Dimensions 6 6
Between Dimensions 1 1
Within Dimensions 5 5

Dimension Reduction Yes[ 2] Yes[ 2]
Number of Covariates 2 1

Level-2 Covariates 1 0

...
Miscellaneous Control Values
Random number seed: 7471
...
2PL Items for Group 1: G1

Item a 1 a 2 a 3 a 4 a 5 a 6 c
1 2.00 2.00 1.50 0.00 0.00 0.00 -1.50
2 1.50 1.50 1.50 0.00 0.00 0.00 -0.50
3 1.00 1.00 1.20 0.00 0.00 0.00 0.50
4 2.00 2.00 0.00 1.20 0.00 0.00 1.50
5 1.50 1.50 0.00 1.50 0.00 0.00 -1.50
6 1.00 1.00 0.00 1.80 0.00 0.00 -0.50
7 1.50 1.50 0.00 0.00 1.20 0.00 0.50
8 1.50 1.50 0.00 0.00 1.50 0.00 1.50
9 1.00 1.00 0.00 0.00 1.50 0.00 -1.50

10 2.00 2.00 0.00 0.00 0.00 1.80 -0.50
11 2.00 2.00 0.00 0.00 0.00 2.00 0.50
12 1.00 1.00 0.00 0.00 0.00 1.50 1.50

...
Group Latent Variable Means:

Group Label mu 1 mu 2 mu 3 mu 4 mu 5 mu 6
1 G1 0.00 0.00 0.00 0.00 0.00 0.00
2 G2 0.20 0.00 0.00 0.00 0.00 0.00

Latent Variable Variance-Covariance Matrix for Group 1: G1
Theta 1 Theta 2 Theta 3 Theta 4 Theta 5 Theta 6

0.50
0.00 1.00
0.00 0.00 1.00
0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 1.00

Latent Variable Variance-Covariance Matrix for Group 2: G2
Theta 1 Theta 2 Theta 3 Theta 4 Theta 5 Theta 6

0.25
0.00 1.00
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0.00 0.00 1.00
0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00 1.00

Latent Regression Coefficients:

Group 1: G1
Covariate 1 Covariate 2

Theta 1 1.30 0.00
Theta 2 0.00 0.50
Theta 3 0.00 0.00
Theta 4 0.00 0.00
Theta 5 0.00 0.00
Theta 6 0.00 0.00

Group 2: G2
Covariate 1

Theta 1 0.00
Theta 2 0.40
Theta 3 0.00
Theta 4 0.00
Theta 5 0.00
Theta 6 0.00

The simulation control output shows that the input syntax and the param-
eter values are specified correctly. The item parameters are invariant across
groups so only parameters from Group 1 are shown here. The within-item
equality of the slopes implies that the 5 level-1 dimensions (a2 - a6) follow a
testlet response theory model (restricted bifactor) with 4 testlets of 3 items
each. Furthermore, the equality of slopes on the Within general dimension
(a2) and the Between general dimension (a1) implies that a random-intercept
model is set up that provides a decomposition of the Between and Within
variances for the general trait. The mean of group 1 is 0.20 lower than group
2, but the group 1 Between variance is 0.50 while the group 2 Between vari-
ance is 0.25. Additionally, the changing number of covariates across groups
and their specified beta regression coefficient values can be see in the “La-
tent Regression Coefficients” tables reported for each group. Note that when
flexMIRTTM simulates covariates, it will only simulate normally distributed
continuous covariates - that is, dichotomous or categorical covariates are cur-
rently unable to be simulated by the program.
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7.9. Internal Simulation Function
Here we provide an overview for using the internal simulation function (ISF),
which allows users to automate numerous replications of a given simulation
and subsequent calibration. This function uses existing simulation and cali-
bration syntax files and merely provides a convenient way of obtaining replica-
tions; it is not an alternative method for constructing simulation syntax files.
Additionally, the ISF is intended primarily for use in item and group param-
eter recovery simulation studies; even if scoring is requested in the supplied
calibration syntax files, scores (typically saved in a -sco file) will not be pro-
duced/saved. If the recovery of person parameters is to be assessed, the ISF
will not be useful and an alternate method of conducting calibration/scoring
on replications should be utilized.
7.9.1 Accessing the Internal Simulation Function

The ISF is available through the flexMIRTTM GUI only; specifically, the ISF
is not available if using the program through the command prompt or when
it is being called by another program, such as R. The ISF is found under the
“flexMIRT” menu bar option of the flexMIRTTM GUI.

Figure 7.2: Accessing the ISF through the GUI

Once “Simulation” is selected, a pop-up will appear where the user enters
the information for the simulation study to be conducted. As can be seen in
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the next image, the user specifies the desired number of replications, the name
and location of the existing simulation syntax file which will be responsible for
the data creation, and the location(s) and name(s) of the calibration syntax
for the model(s) that the users wishes to fit to the simulated data.

flexMIRTTM will output the simulated data sets to external files by de-
fault. The simulated datasets will be output to the file name specified in the
simulation syntax file but will have the replication number added to the output
file name. For instance, if we are outputting the data to the file “SIM.dat" via
the File = "SIM.dat"; command in the simulation syntax, the individual
replications will be saved to files “SIM-0.dat,” “SIM-1.dat,” etc. However, in
the calibration syntax, to direct flexMIRTTM to the datafile, we will still use
the statement File = "SIM.dat"; - without any mention of the replication
number.

When all the syntax files have been identified and a name for the output
file is specified in the “Save Simulation Output to:” blank, the “Run” button
will be enabled.

Figure 7.3: Completed ISF pop-up window
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Once the simulation has been submitted, flexMIRTTM will begin the pro-
cess of simulating data and fitting the specified model(s) to the data. The
progress of each replication is printed in the engine viewing pane, as with any
one-off simulation or calibration. When the specified number of replications
have completed, a single output file is created. The format of the ISF output
file is optimized to be read into some other software program (e.g., SAS, R)
and as such, appears quite different from the normal flexMIRTTM output. The
output file has no labeled sections or column headers, etc.. Due to this, the
layout of the ISF output file will be described in detail.
7.9.2 The Simulation Output File

The first 6 columns in the output for every model summary will contain the
same information. Column 1 has the simulation replication number. Column
2 prints what is called the return code and is an indicator of successful repli-
cations. If the return code is 0, the replication completed successfully; if it
takes any value other than 0, a problem was encountered. Column 3 reports
the log likelihood, Column 4 gives the number of estimation cycles that were
completed to fit the model, the 5th column reports the time the calibration
run took, and the 6th column gives the inverse of the condition number. The
inverse condition number is equal to the ratio of the smallest to largest eigen-
value of the asymptotic covariance matrix of the item parameters; if it is very
small, it shows instability of the obtained solution.

Output 7.5: Beginning Columns of Output from 5 Replications

1 0 -4.42522e+003 46 1.41000e-001 8.61952e-003 2.87409e+000 1.99261e+000 7.62795e-001
2 0 -4.44206e+003 40 1.25000e-001 1.52923e-002 3.00412e+000 1.88355e+000 7.38170e-001
3 0 -4.28512e+003 41 1.25000e-001 8.18986e-003 2.78522e+000 1.87415e+000 7.44810e-001
4 0 -4.33888e+003 31 1.09000e-001 1.63897e-002 2.74887e+000 1.86261e+000 6.77367e-001
5 0 -4.37110e+003 29 1.09000e-001 1.82420e-002 2.58602e+000 1.84299e+000 8.12819e-001

At the seventh column, reporting of the item and latent variables param-
eters begins. The parameters are reported in the same order as they are
numbered in a corresponding one-off calibration run output. It is strongly
recommended that a single run of the calibration file(s) be conducted prior to
employing the ISF, to both ensure the syntax works properly and to obtain
the ordering of parameters. For example, below is the item parameter portion
of the flexMIRTTM output for a single run fitting the model found in the file
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“Fit1.flexmirt”.

Output 7.6: Item Parameters with Parameter Number Labels

Graded Items for Group 1: G1
Item Label P# a s.e. P# c 1 s.e. P# c 2 s.e.

1 v1 3 0.81 0.13 1 2.59 0.14 2 1.84 0.11
2 v2 6 1.14 0.15 4 2.69 0.16 5 2.01 0.13
3 v3 9 1.41 0.15 7 2.92 0.18 8 0.20 0.09
4 v4 12 1.25 0.13 10 2.88 0.16 11 0.13 0.08
5 v5 15 2.13 0.28 13 2.76 0.24 14 1.70 0.18
6 v6 18 0.54 0.09 16 2.92 0.14 17 0.20 0.07

The order in which the parameters will be printed in the ISF output cor-
responds to the values list in the columns labeled “P#” in the output. From
this output excerpt, we can see that in the ISF output file, the two intercept
parameters and then the slope parameter for Item v1 will be printed first, as
indicated by the 1, 2, and 3, respectively, in the “’P#” columns. These val-
ues are followed by the intercept parameters and slope for Item v2, and so on.
Once the item parameters have been reported, the latent variable mean(s) and
covariance(s) are printed. After all point estimates are given, the respective
standard error for each parameter is printed, in the same order as the point
estimates.

Following all parameter point estimates and SEs, the next six columns of
the ISF output are fixed. flexMIRTTM will report, in order, the G2,X2, and
M2 overall fit statistics. It should be noted here that the M2 column will
always print, regardless of whether the statistic was requested or not. If the
statistic was not requested, via the GOF and M2 statements in the <Options>
section, placeholder values of 0.0000 will be printed and are not indicative of
the actual value of the M2 statistic, had it been requested.

The overall fit statistics are followed by three members of the power-
divergence family of fit statistics (e.g., Cressie & Read, 1984) for assessing
latent distribution fit, specifically the summed score likelihood based G2,D2,
and X2. These indices have been found to accurately detect departures from
normality within the latent distribution while appropriately “ignoring” other
forms of model misspecification such as multidimensionality (Li & Cai, 2012).
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Output 7.7: ISF output - Switch from Model 1 to Model 2 Values

... 1.29309e-314 1.47651e-317 | 1 0 -4.52136E+03 31 ...

... 9.70097e-315 1.47651e-317 | 2 0 -4.40664E+03 24 ...

... 2.32371e-315 1.47651e-317 | 3 0 -4.44256E+03 24 ...

... 1.04469e-314 1.47651e-317 | 4 0 -4.45391E+03 21 ...

... 1.02812e-314 1.47651e-317 | 5 0 -4.58027E+03 22 ...

If the ISF was instructed to fit multiple models to the data, then the values
for next model will follow, on the same line, after the latent distribution fit
statistics of the current model. The new model reporting begins with the
replication number and follows the same general order of reporting detailed
previously. If we fit two models to a given set of simulated data, the output
columns at the point where the reporting for the first model ends and the
second model begins will look something like the values presented in Output
6.7 (although we have added the break line for emphasis). Note, however, that
the numbering of parameters may change from model to model. As stated
before, a single run of any model being fit is strongly recommended before
using the ISF.
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CHAPTER 8

Diagnostic Classification Models

Over the last several decades, a growing field of interest and research has been
the development and estimation of latent variable models that locate respon-
dents in multidimensional space for the purpose of diagnosis; in this context,
“diagnosis” includes the usual meaning, such as diagnosing a psychological dis-
order, but also encompasses activities such as identifying a student’s mastery
of content areas in an educational setting. Such models have been variously
termed diagnostic classification models (DCMs), cognitive diagnosis models,
cognitive psychometric models, restricted latent class models, and structured
IRT models, among others. The goal of this chapter is not to provide a didac-
tic on DCMs (interested readers are directed to Rupp, Templin, and Henson
(2010) for a thorough discussion of DCMs and related models) but to demon-
strate, for those already familiar with the models, how flexMIRTTM may be
used to fit them.
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8.1. General DCM Modeling Framework
Complete coverage of the models flexMIRTTM fits to DCMs is provided in
the Models chapter, but we will briefly introduce the models here. Figure 8.1
provides a schematic for a generic flexMIRTTM DCM with a single higher-
order factor to facilitate the discussion of the mathematical equations.

Figure 8.1: Generic Higher-order DCM

The extended DCMs used by flexMIRTTM combine a linear predictor with
a link function. The linear predictor may be represented as:

η =α+
K∑

k1=1
βk1xk1 +

K∑
k1=1

(k1−1)∑
k2=1

βk1,k2xk1xk2 (8.1)

+ higher-order interaction terms+
p∑

k=1
λkξk

where α, β, and λ are item parameters, xs are 0/1 attributes, and ξs are
continuous latent variables. The kernel (linear predictor) η can be turned into
item response probabilities through the use of appropriate link functions, such
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as the logit presented below.

P (yi = 1|x, ξ) = πi(1|x, ξ) = 1
1 + exp[−(η)]

For the higher-order portion of the DCM, flexMIRTTM is modeling the
x probabilities, (i.e., P (x1, ...,xK |θ1, . . . , θq) =

∏K
k=1 P (xk|θ1, . . . , θq)) with a

set of (higher-order) latent variables (θ), so that each of the attributes, xs, is
treated as if it is an observed item.

8.2. DCM Specific Syntax Options

Syntax Display 8.1: <Options>, <Groups>, and <Constraints>- DCM Spe-
cific Options

<Options>
DMtable = Yes/No;

<Groups>
Attributes = ?;
InteractionEffects = (?,?,...);
Generate = (?,?),(?,?),...;

DM = group ;

<Constraints>
Coeff group , (vars ), parameter , ?;
Fix group ,(vars ), MainEffect;
Free group ,(vars ), Interaction(?,?,.. );

In the <Options> section, the user may control whether or not the (some-
times large) diagnostic classification probability table is printed in the output
via the DMtable command.

Attributes is used to set the number of main effects present in the skill
space that is being assessed. This is the keyword that triggers flexMIRTTM to
model discrete latent variables, rather than the default continuous latent vari-
ables.

InteractionEffects instructs flexMIRTTM to automatically generate all
possible interaction effects. For instance, with 4 attributes one may specify
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InteractionEffects = (2,3,4); and, in addition to the 4 main effects, the
program with also generate the 2nd, 3rd, and 4th order interaction terms of
the attributes as dimensions of the model. If only the second order interaction
effects are desired, those would be created by specifying InteractionEffects
= (2);.

Similar to the InteractionEffects keyword, Generate sets up higher or-
der interactions effects. However, rather than creating all possible interaction
effects Generate creates only those effects specified in the statement. For ex-
ample, Generate = (3,6,7),(4,7); is used to generate the interaction effect
of attributes 3, 6, and 7 and, separately, the interaction effect of attributes 4
and 7. There is no limit to the number of interaction effects that may be
specified in a Generate statement and the order in which interaction effects
are specified does not matter.

The DM command stands for “diagnostic model” and is used to set the
group containing observed data - this is the group to which the higher-order
DM will be applied. The DM command is optional; one could, in principle, fit
a model without the DM (higher-order) latent variables.

In the <Constraints> section, the Coeff command allows users to impose
proportionality restrictions on the item parameters (i.e., MainEffects and
Interactions). For instance, a DINO model may be parameterized as a
logistic model with interactions but the interaction coefficients are -1.0 times
the main effect slopes. With the Coeff keyword, we can change the sign of
those specific interaction terms, effectively enabling flexMIRTTM to fit more
DCMs than it would be capable of fitting if restricted to only the MainEffect
and Interaction keywords.

The Fix and Free commands noted in the <Constraints> section aren’t
limited to those particular commands or to DCMs, but are provided to show
that rather than using the typical IRT parameter keywords Slope, etc.),
users may employ the parameter keywords MainEffect and Interaction to
allow syntax specification that is in keeping with the DCM conceptualiza-
tion/terminology for the models.

8.3. DCM Modeling Examples
In this section, we will provide several examples of DCMs fit in flexMIRTTM

- all examples will use default BAEM estimation as DCMs have not been im-
plemented for either MH-RM or MCMC estimation. We will discuss basic
examples that demonstrate how to fit several of the more well-known DCMs
that appear in the literature and then, using datasets that have been fit else-
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where, demonstrate the comparability of flexMIRTTM estimates to those from
other programs and estimation methods.
8.3.1 Introductory DCM Examples

Here we provide straight-forward demonstrations of several widely discussed
models. We hope that in addition to providing simple, concrete examples for
the chosen models, from these examples users will begin to see the flexibility
flexMIRTTM has in fitting DCMs, gain insight into the details of our syntax
for DCMs, and be able to extrapolate this to fit the wide variety of alternative
DCMs that are not specifically covered but may be fit using flexMIRTTM. For
the examples in this section, we will use simulated data for 15 dichotomous
items that were generated to measure four underlying attributes. The Q-
matrix, which assigns items to attributes, is presented in Table 8.1. As can
be seen, the majority of items use only 1 attribute, but the final 3 items are
assigned to both attributes 3 and 4. These items could be fit with a variety of
models and we will present examples for three different DCMs.

Table 8.1: Q-matrix for Basic DCM Demonstrations

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4
Item 1 1 0 0 0
Item 2 1 0 0 0
Item 3 1 0 0 0
Item 4 0 1 0 0
Item 5 0 1 0 0
Item 6 0 1 0 0
Item 7 0 0 1 0
Item 8 0 0 1 0
Item 9 0 0 1 0
Item 10 0 0 0 1
Item 11 0 0 0 1
Item 12 0 0 0 1
Item 13 0 0 1 1
Item 14 0 0 1 1
Item 15 0 0 1 1
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Basic C-RUM Fit to Simulated Data

For the first example, the majority of items will only depend on the main effect
of a single attribute and we will fit the compensatory reparameterized unified
model (C-RUM) to the final three items. The C-RUM model (e.g., Hartz,
2002; Choi, Rupp, & Pan, 2013) is a DCM that, when items are informed
by multiple attributes, allows for mastery of one attribute to compensate for
non-mastery on other attributes. The C-RUM estimates for each item an
intercept term and as many slope terms for an item as there are “1” entries
in the Q-matrix. As detailed in Choi et al. (2013), C-RUM is a special case of
the log-linear diagnostic classification model (LDCM) in which all interaction
terms are set to 0, meaning only main effects are estimated.

Example 8-1: C-RUM Model Fit To Simulated Data

1 <Project>
2 Title = "Calibrate and Score Simultaed DM Data";
3 Description= "C-RUM Model";
4
5 <Options>
6 Mode = Calibration;
7 MaxE = 20000;
8 MaxM = 5;
9 Mtol = 0;

10 Etol = 1e-5;
11 SE = REM;
12 SaveCOV = Yes;
13 SavePRM = Yes;
14 SaveSCO = Yes;
15 Score = EAP;
16
17 <Groups>
18 %G%
19 File ="DMsim.dat";
20 Varnames = v1-v15
21 N= 3000;
22 Ncats(v1-v15) = 2;
23 Model(v1-v15) = Graded(2);
24
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25 Attributes = 4;
26 Dimensions = 4;
27
28 %D%
29 Varnames = a1-a4;
30 DM = G;
31
32 <Constraints>
33 Fix G, (v1-v15),MainEffect;
34 Free G, (v1-v3),MainEffect(1);
35 Free G, (v4-v6),MainEffect(2);
36 Free G, (v7-v9,v13-v15),MainEffect(3);
37 Free G, (v10-v15),MainEffect(4);

The first points of note in the syntax occur in the <Options> section. The
maximum number of E-steps has been increased from the default, the E tol-
erance and M tolerance values have been decreased, and the SE calculation
method has been set to REM (Richardson extrapolation method), as experi-
ence has found the REM SEs to be preferable to estimates from other methods.
These changes in the <Options> section are made to improve the resulting SE
estimates and are recommended for any DCMs fit using flexMIRT c©.

The specifications for the DCM begin in the <Groups> section. Although
the naming of the groups is arbitrary, all examples will use the custom of
defining group G as the group containing observed data and group D as the
group containing the higher-order latent dimensions/attributes. As with a
typical IRT model, in group G we read in our data from a named file, provide
flexMIRTTM with the variable names, and specify the sample size. The items
were simulated as correct/incorrect items, so Ncats has been set to 2 and we
will fit the 2PLM to all items. For the first statement specific to the DCM, we
tell flexMIRTTM that 4 latent attributes will be used. Because the C-RUM
model uses only main effect terms, the total number of dimensions is equal to
the number of attributes.

In the D group, we inform flexMIRTTM that the higher-order portion of
the model we are setting up will be applied to the group with observed data,
group G, using the DM = G; statement. We then name the four attributes via
Varnames = a1- a4;. If no other information is given regarding categories or
a model to be fit, flexMIRTTM by default will assume there are two categories
for each of the attributes and will fit the attributes with the 2PLM. In the
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<Constraints> section, we assign items onto attributes according to the Q-
matrix. First, we fix all items to 0 and then free items onto the appropriate
main effect and interaction terms. Items 1 - 12 only have main effects for a
single attribute specified in the <Constraints> section. From the Q-matrix,
we know that items 13 - 15 will load on both attributes 3 and 4. These
specifications are incorporated in the statements Free G,(v7-v9, v13-v15),
MainEffect(3); and Free G,(v10-v15), MainEffect(4);, in which items
13 - 15 appear in the list of items freed onto both attribute 3 and attribute 4.

The first section of the output excerpt presents the item parameter esti-
mates, with freely-estimated versus fixed-at-zero parameters mirroring the Q-
matrix specifications. The factors labeled a1-a4 represent main effects/slope
parameters for attributes 1 - 4, respectively, and c is the intercept parameter.

The next section of interest is labeled Diagnostic IRT Attributes and
Cross-classification Probabilities for Group 1: G, which reports the
estimated proportion of the population in each attribute profile. For instance,
it is expected that about 15% of the population have mastered none of the
measured attributes (attribute profile [0 0 0 0]), around 4 % have mastered at-
tributes 2 and 4 (profile [0 1 0 1]), and 18.4% of the population have mastered
all 4 attributes (profile [1 1 1 1]).
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We will next cover the structure of the individual scoring file (-sco) that
was requested in the <Options> section. In the -sco output excerpt presented,
we have given only the first 10 cases and have included line breaks (//) and a
separator (|) not in the output file for ease of presentation.

The first two columns of the -sco file give the group and observation num-
ber, similar to a standard flexMIRTTM IRT score output file. Recall that for
this example, there are 4 attributes and 16 possible attribute profiles. The es-
timated probability of the respondent having mastered each of the attributes
individually is given, starting after the observation number. For example, for
observation 1, the probability they have mastery of attribute 1 is 0.054, for
attribute 2 it is 0.128 and for attribute 3 it is 0.165 and for attribute 4 it
is 0.375. The following four columns, after the separator, are the estimated
standard errors for those probabilities, respectively.

The entries that have been moved to the second line of each observation
contain the estimated attribute posterior variance/covariance matrix. For ob-
servation 1, those values would enter the matrix as:

a1 a2 a3 a4
a1 0.050755
a2 0.023774 0.109961
a3 0.024396 0.033344 0.137477
a4 0.029047 0.049426 0.051856 0.234379

In what we have made the third line for each respondent are the posterior
probabilities for each of the possible attribute profiles. As noted earlier with 4
attributes, there are 16 possible profiles and, therefore, 16 values on the third
line for this example. For observation 1, the posterior probability of being
in attribute profile 1 is 0.548, the probability of possessing attribute profile 2
is 0.204 and so on. The order in which the attribute profile probabilities are
given matches the order of the probability profiles used in the output table
“Diagnostic IRT Attributes and Cross-classification Probabilities.” Looking
back at the output presented for this example, we find that attribute profile
1 corresponds to [0 0 0 0] (meaning no attributes are mastered) and attribute
profile 2 corresponds to [0 0 0 1] (meaning only attribute 4 has been mastered),
and so on.
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Finally, in what has been moved to the fourth line for each respondent the
most likely attribute profile is listed, followed by the individual’s estimated
theta score for the higher-order latent variable, as well as the the SD and
variance estimates for the higher-order theta estimate. For respondent 1, the
most likely attribute profile is profile 1, corresponding to attribute profile [0 0
0 0] (mastery of no attributes); this attribute can be found to have the highest
posterior probability listed on the line above.
Basic DINA Fit to Simulated Data

For the second example, we will fit the deterministic input, noisy-and-gate
(DINA) model to the final three items. Unlike the C-RUM, this model is non-
compensatory in nature, not allowing mastery on one attribute to make up
for lack of mastery on other attributes. This is accomplished in the LDCM
framework by constraining main effects to zero and allowing only the most
complex attribute interaction term for an item to take on a non-zero value.

Example 8-2: DINA Fit to Simulated Data

1 <Project>
2 Title = "Calibrate and Score Simulated DM Data";
3 Description = "DINA Model";
4
5 <Options>
6 Mode = Calibration;
7 MaxE = 20000;
8 MaxM = 5;
9 Etol = 1e-5;

10 SE = REM;
11 SaveCOV = Yes;
12 SavePRM = Yes;
13 SaveSCO = Yes;
14 Score = SSC;
15
16 <Groups>
17 %G%
18 File ="DMsim.dat";
19 Varnames = v1-v15
20 N = 3000;
21 Ncats(v1-v15) = 2;
22 Model(v1-v15) = Graded(2);
23
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24 Attributes = 4;
25 InteractionEffects = (2);
26 Dimensions = 10; //4 ME and 6 2nd order ints.
27
28 %D%
29 Varnames = a1-a4;
30 DM = G;
31
32 <Constraints>
33 Fix G, (v1-v15),MainEffect;
34 Free G, (v1-v3),MainEffect(1);
35 Free G, (v4-v6),MainEffect(2);
36 Free G, (v7-v9),MainEffect(3);
37 Free G, (v10-v12),MainEffect(4);
38
39 // item 13-15 fit with DINA model depends on int of attribs 3,4;
40 Free G, (v13-v15),Interaction(3,4);

All syntax in the <Options> section remains unchanged from the previous
example, with the exception of requesting sum score to EAP conversion tables
(via Score = SSC;). In the G group, we have declared the data file, variable
names, sample size, number of categories, and IRT model to be fit to each
item, as in the previous example. We again specify that there are 4 attributes
with main effects, but because we are using the DINA model we will also
need to construct dimensions that will represent the interaction effects. This
is accomplished via InteractionEffects = (2); which is requesting that all
second-order interaction terms (that is, attribute 1 with attribute 2, attribute 1
with attribute 3, etc.) be created for the model. Because we have requested all
second-order interactions (of which there are 6 possible with the 4 attributes),
the total number of dimensions for the final model is 10 (4 main effect terms
and 6 second-order interactions). Syntax in the D group remains unchanged
from the previous example.

In the <Constraints> section, as with the previous example, we initially fix
all items to zero and then free items onto the appropriate attributes. Unlike
the previous example, which used only main effects, we are also using the
parameter keyword Interaction to free items 13-15 onto the interaction of
attributes 3 and 4. As noted when introducing the model, for items that
depend on more than one attribute, only the highest order interaction terms
is allowed to be non-zero, so we do not free items 13-15 onto the main effects
of attributes 3 or 4.
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Because the majority of the output has the same structure as the previous
example’s, regardless of specific DCM fit to items, we will only briefly discuss
outputted estimates. For this example, we highlight the output that relates
to the item parameters and the summed score to EAP conversion table in the
-ssc file that is printed due to Score = SSC;.

The output excerpt presents the estimated parameters for the items, with
estimated versus fixed-at-zero loadings mirroring the Q-matrix specifications.
The factors labeled a1 - a4 represent main effects for attributes 1 - 4 and
a5 - a10 represent the requested 2nd order interactions. Items 1 - 12 have
estimates for main effects on only the attributes specified in the Q-matrix
and item 13-15 have estimates on only the interaction of attributes 3 and
4, which is labeled as a10 in the parameter table. One may notice that di-
mensions a5 - a9 that have no items assigned to them - these dimensions
correspond to the unused second order interaction effects that were created
via the InteractionEffects keyword. The estimated item values reported
are in the LDCM parameterization, but the classic DINA parameters of guess-
ing and slippage may be obtained by conversion. Guessing is found from the
reported flexMIRTTM parameters as exp(c)/(1 + exp(c)) and one minus the
slippage term (1− s) is found as exp(c+ a)/(1 + exp(c+ a)).
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In the -ssc file that was generated by the scoring request, we find tables
that provide conversions from sum scores to the probability of mastery for
each attribute. We present an excerpt of these table below.

Output 8.4: DINA Summed Score Conversion Tables from -ssc File

Summed Score to Attribute Profile Probability Conversion Table:
Summed
Score EAP 1 EAP 2 EAP 3 EAP 4 SD 1 SD 2 SD 3 SD 4 P Error Covariance Matrix
0.00 0.001 0.001 0.026 0.005 0.030 0.026 0.158 0.070 0.0000002 0.000876

0.000003 0.000700
0.000115 0.000045 0.024902
0.000017 0.000007 -0.000092 0.004948

1.00 0.001 0.001 0.029 0.010 0.032 0.035 0.168 0.097 0.0000093 0.001025
0.000006 0.001256
0.000147 0.000085 0.028217
0.000035 0.000017 -0.000168 0.009475

2.00 0.001 0.002 0.036 0.021 0.036 0.049 0.186 0.143 0.0001508 0.001332
0.000013 0.002420
0.000214 0.000173 0.034470
0.000084 0.000041 -0.000363 0.020508

...

13.00 0.760 0.795 0.990 0.983 0.427 0.404 0.097 0.129 0.0805989 0.182430
0.027666 0.163028
0.002884 0.002254 0.009474
0.005347 0.003948 0.001326 0.016527

14.00 0.898 0.889 0.997 0.992 0.303 0.315 0.053 0.087 0.0356330 0.091595
0.013076 0.099016
0.000808 0.000623 0.002789
0.001972 0.001464 0.000291 0.007550

15.00 0.966 0.947 0.999 0.996 0.180 0.225 0.027 0.060 0.0078999 0.032539
0.004564 0.050540
0.000175 0.000147 0.000739
0.000572 0.000493 0.000057 0.003578

For this example, each summed score is listed with four EAP values, cor-
responding to the 4 attributes specified in the model, 4 SD values, the ex-
pected proportion of respondents who will obtain the listed summed score
(listed in the column labeled p), and the error variance/covariance matrix
associated with that summed score. For example, given a summed score of
0, the probability that the individual has mastered attribute 1 is 0.001, the
probability that they have mastered attribute 3 is 0.026 and so on. For in-
dividuals with a summed score of 15, those probabilities increase to 0.966
and 0.999, respectively. Rather than simply providing the most likely at-
tribute profile associated with a summed score, flexMIRTTM prints the individ-
ual attribute probabilities so researchers have sufficient information to apply
mastery/indifference/non-mastery cut-off values appropriate for the specific
assessment at hand.
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Basic DINO Fit to Simulated Data

The final basic example using this simulated dataset will fit the disjunctive,
deterministic noisy-or-gate (DINO) model. Unlike the previous models, the
DINO allows for both non-zero main effect and interaction terms. However,
and again using the LDCM framework, constraints are placed such that the
main effect slopes are set equal and the interaction term is -1 times the main
effect constrained-to-equality slope. This is done because an item may be
endorsed/answered correctly if any one of the attributes is mastered and there
is assumed to be no added benefit to having mastery of several/all attributes
over mastering only one or a subset of the attributes; the -1 applied to the
interaction term serves to remove such a “benefit” from the model.

Example 8-3: DINO Fit to Simulated Data

1 <Project>
2 Title = "Calibrate and Score Simulated DM Data";
3 Description= "DINO Model";
4
5 <Options>
6 Mode = Calibration;
7 MaxE = 20000;
8 MaxM = 5;
9 Etol = 1e-5;

10 SE = REM;
11 SaveCOV = Yes;
12 SavePRM = Yes;
13 SaveSCO = Yes;
14 Score = EAP;
15
16
17 <Groups>
18 %G%
19 File ="DMsim.dat";
20 Varnames = v1-v15
21 N=3000;
22 Ncats(v1-v15) = 2;
23 Model(v1-v15) = Graded(2);
24
25 Attributes = 4;
26 Generate = (3,4);
27 Dimensions = 5; //4 ME and 1 2nd order int.
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28
29 %D%
30 Varnames a1-a4;
31 DM = G;
32
33 <Constraints>
34 Fix G, (v1-v15),MainEffect;
35
36 Free G, (v1-v3),MainEffect(1);
37 Free G, (v4-v6),MainEffect(2);
38 Free G, (v7-v9),MainEffect(3);
39 Free G, (v10-v12),MainEffect(4);
40
41 // item 13-15 fit with DINO model that depends on int of attribs 3,4;
42 Free G, (v13-v15),MainEffect(3);
43 Free G, (v13-v15),MainEffect(4);
44 Free G, (v13-v15),Interaction(3,4);
45
46 Equal G, (v13), MainEffect(3):
47 G, (v13), MainEffect(4):
48 G, (v13), Interaction(3,4);
49
50 Coeff G, (v13), Interaction(3,4), -1;
51
52 Equal G, (v14), MainEffect(3):
53 G, (v14), MainEffect(4):
54 G, (v14), Interaction(3,4);
55
56 Coeff G, (v14), Interaction(3,4), -1;
57
58 Equal G, (v15), MainEffect(3):
59 G, (v15), MainEffect(4):
60 G, (v15), Interaction(3,4);
61
62 Coeff G, (v15), Interaction(3,4), -1;

Again, the maximum number of E-step and M-steps have been increased from
the default, the E tolerance and M tolerance values have been decreased, and
the SE calculation method has been set to REM in the <Options> section.
As noted in the output from the previous example, there were several latent
dimensions that had no items loading onto them. Here, rather than using
the general InteractionEffects keyword, we have used the more targeted
Generate to construct only those interaction terms which will be used in the
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model. As seen in the Q-matrix and discussed earlier, only the interaction
of attributes 3 and 4 is needed and is specified by the Generate = (3,4);
statement. If additional interactions were needed, they may be added by
placing a comma after the last interaction term and listing the other desired
interactions. For example, if the 3-way interaction of attributes 2, 3 and 4 was
desired in addition to the 3-4 interaction, we could specify that using a single
generate statement of Generate = (3,4), (2,3,4);.

As before, we free the first 12 items onto the appropriate single attributes.
Following the comment in the syntax, we free items 13 -15 on both main effect
terms for attributes 3 and 4, as well as the interaction of the two attributes. To
induce the equality specified in the model, we set the main effects and interac-
tion terms equal to each of the items via a statement such as Equal G, (v13),
MainEffect(3):G, (v13), MainEffect(4):G, (v13), Interaction(3,4);
and then apply the -1 to the interaction with a coefficient constraint of the
form Coeff G, (v13), Interaction(3,4), -1;.

160



O
ut
pu

t
8.
5:

D
IN

O
O
ut
pu

t
-I

te
m

Pa
ra
m
et
er
s

It
em

La
be

l
P#

a
1

s.
e.

P#
a

2
s.

e.
P#

a
3

s.
e.

P#
a

4
s.

e.
P#

a
5

s.
e.

P#
c

s.
e.

1
v1

24
1.

89
0.

14
0.

00
--

--
0.

00
--

--
0.

00
--

--
0.

00
--

--
1

-1
.6

8
0.

08
2

v2
25

1.
90

0.
15

0.
00

--
--

0.
00

--
--

0.
00

--
--

0.
00

--
--

2
-1

.1
4

0.
07

3
v3

26
1.

90
0.

17
0.

00
--

--
0.

00
--

--
0.

00
--

--
0.

00
--

--
3

-0
.6

3
0.

06
4

v4
0.

00
--

--
27

2.
47

0.
26

0.
00

--
--

0.
00

--
--

0.
00

--
--

4
-0

.3
3

0.
07

5
v5

0.
00

--
--

28
2.

23
0.

17
0.

00
--

--
0.

00
--

--
0.

00
--

--
5

-1
.1

5
0.

08
6

v6
0.

00
--

--
29

1.
91

0.
34

0.
00

--
--

0.
00

--
--

0.
00

--
--

6
1.

55
0.

07
7

v7
0.

00
--

--
0.

00
--

--
30

1.
84

0.
13

0.
00

--
--

0.
00

--
--

7
-1

.1
8

0.
09

8
v8

0.
00

--
--

0.
00

--
--

31
2.

17
0.

14
0.

00
--

--
0.

00
--

--
8

-0
.7

9
0.

09
9

v9
0.

00
--

--
0.

00
--

--
32

1.
68

0.
13

0.
00

--
--

0.
00

--
--

9
-0

.3
2

0.
08

10
v1

0
0.

00
--

--
0.

00
--

--
0.

00
--

--
33

2.
42

0.
17

0.
00

--
--

10
0.

12
0.

10
11

v1
1

0.
00

--
--

0.
00

--
--

0.
00

--
--

34
1.

63
0.

17
0.

00
--

--
11

0.
87

0.
10

12
v1

2
0.

00
--

--
0.

00
--

--
0.

00
--

--
35

1.
91

0.
20

0.
00

--
--

12
1.

25
0.

11
13

v1
3

0.
00

--
--

0.
00

--
--

36
1.

06
0.

29
36

1.
06

0.
29

36
-1

.0
6

0.
29

13
2.

74
0.

21
14

v1
4

0.
00

--
--

0.
00

--
--

37
1.

51
0.

20
37

1.
51

0.
20

37
-1

.5
1

0.
20

14
1.

60
0.

14
15

v1
5

0.
00

--
--

0.
00

--
--

38
2.

53
0.

14
38

2.
53

0.
14

38
-2

.5
3

0.
14

15
-1

.6
6

0.
13

161



As with the DINA model, the estimated item values reported are in the
LDCM parameterization but DINO parameters of guessing and slippage may
be obtained by conversion. Again, guessing is found from the reported param-
eters as exp(c)/(1+ exp(c)) and one minus the slippage term (1− s) is found
as exp(c+ a)/(1 + exp(c+ a)). The a term used in the conversion should be
the value reported in one of the main effect columns, not the negative value
associated with the interaction term.

One aspect of the output that we haven’t discussed as of yet is the model
fit. We present the -2 log likelihood, AIC, and BIC values for each of the
three models fit to our simulated data in Table 8.2. As with the output for
more standard IRT models, these values are reported at the bottom of the -irt
flexMIRTTM output file. As can be seen in Table 8.2, the fit of the models
indicates that using DINO for the final three items was the preferred model
based on all three reported fit indices. It is informative to know that the same
data set was used in all three examples and this data was generated using the
DINO model for the last three items. The advantage for the DINO is some-
times small, but that is most likely a result of the majority of items being fit
by single main effects, the specification of which did not vary regardless of the
model that was used for the items with more complex attribute relationships.

Table 8.2: Model Fit for Basic DCMs Fit to Simulated Data

CRUM DINA DINO

-2loglikelihood: 45799.53 45873.59 45798.31
Akaike Information Criterion (AIC): 45881.53 45949.59 45874.31
Bayesian Information Criterion (BIC): 46156.21 46204.17 46128.89

Basic DINA with Testlet Structure

For the final example in this section, we employ a new simulated dataset
that contains responses to 24 dichotomous items that are to be modeled with
4 attributes. In addition to being generated from a DCM, this data was
simulated to incorporate a testlet structure, such as when multiple reading
items use the same passage as a prompt. A graphical depiction of such a
model was given in Figure 8.1, where ys are the observed items, xs are the
discrete attributes, and ξs are the testlet effects.

For the 24 item dataset we will be modeling, items 1 - 6 are members of
testlet 1, items 7 - 12 belong to testlet 2, items 13-18 to testlet 3, and items
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19-24 are members of the final testlet. The Q-matrix for mapping items onto
attributes supplied in Table 8.3.

Table 8.3: Q-matrix for Testlet-DINA Example

Item Attribute 1 Attribute 2 Attribute 3 Attribute 4
Item 1 1 1 0 0
Item 2 0 0 1 1
Item 3 1 0 1 0
Item 4 0 1 0 1
Item 5 1 0 0 1
Item 6 0 1 1 0
Item 7 1 1 0 0
Item 8 0 0 1 1
Item 9 1 0 1 0
Item 10 0 1 0 1
Item 11 1 0 0 1
Item 12 0 1 1 0
Item 13 1 1 0 0
Item 14 0 0 1 1
Item 15 1 0 1 0
Item 16 0 1 0 1
Item 17 1 0 0 1
Item 18 0 1 1 0
Item 19 1 1 0 0
Item 20 0 0 1 1
Item 21 1 0 1 0
Item 22 0 1 0 1
Item 23 1 0 0 1
Item 24 0 1 1 0

As seen in syntax, the <Options> section is largely unchanged from the
previous examples, although we have reduced the number quadrature points
from the default, due to the high-dimensional nature of this problem. In the
first group, G, the data file, variable names, etc. have been given. As with
previous DCM examples, we specify the number of attributes (Attributes
= 4;) and also request that flexMIRTTM create dimensions for the interac-
tion effects. From the Q-matrix, every possible second order interaction is

163



needed, so we use InteractionEffects = (2); to generate those dimensions
automatically. To incorporate the testlet structure, we will fit a bifactor-type
model, in which the DCM main effect and interactions are the primary/general
dimensions and the testlet effects are considered the specific dimensions. To
indicate this to flexMIRTTM we set Primary = 10; which is the total number
of DCM dimensions (4 main effects + 6 interactions) and set the total number
of dimensions for the model equal to 14 (10 DCM dimensions + 4 testlet effect
dimensions).

In the <Constraints> section, the first group of statements is used to
assign items to the appropriate interaction terms, based on the Q-matrix,
for the DINA model. The second group of constraints, beginning with Free
G,(v1-v6),Slope(11); is used to assign items to their testlet dimension. As
noted earlier, the first 10 latent dimensions are taken up by the DCM, so the
first available dimension for a testlet effect is dimension 11, hence Slope(11) in
the noted Free statement. The specific dimensions are specified as a restricted
bifactor model, where the testlet effect is presumed to be a testlet-specific
random intercept term. This requires the equality of the slopes within factors
and is accomplished with the final group of constraints. With the final Equal
constraint, we are fitting a Rasch-type model to the higher-order dimensions,
constraining the slopes of attribute 1 through attribute 4 in group D to equality.

Example 8-4: Testlet Structure with DINA model

1 <Project>
2 Title = "Fit HO-DINA Model with Testlets";
3 Description= "HO-DINA Model - 4 attributes";
4 <Options>
5 Mode = Calibration;
6 MaxE = 10000;
7 Etol = 1e-4;
8 Mtol = 1e-7;
9 Quadrature = 25,6.0;

10 Processors = 2;
11 GOF = Extended;
12 SE = REM;
13 SaveDBG = Yes;
14 SaveSCO = Yes;
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15 Score = EAP;
16
17 <Groups>
18 %G%
19 File ="fitDINAt.dat";
20 Varnames = v1-v24
21 Ncats(v1-v24) = 2;
22 Model(v1-v24) = Graded(2);
23
24 Attributes = 4;
25 InteractionEffects = (2); //6 possible 2nd order ints.
26 Primary = 10; //4+6 = number of dimensions to DCM
27 Dimensions = 14; //total dims, including testlet effects
28
29 %D%
30 Varnames a1-a4;
31 DM = G;
32
33 <Constraints>
34 Fix G, (v1-v24),MainEffect;
35
36 Free G,(v1,v7,v13,v19),Interaction(1,2);
37 Free G,(v3,v9,v15,v21),Interaction(1,3);
38 Free G,(v5,v11,v17,v23),Interaction(1,4);
39 Free G,(v6,v12,v18,v24),Interaction(2,3);
40 Free G,(v4,v10,v16,v22),Interaction(2,4);
41 Free G,(v2,v8,v14,v20),Interaction(3,4);
42
43 Free G,(v1-v6),Slope(11);
44 Free G,(v7-v12),Slope(12);
45 Free G,(v13-v18),Slope(13);
46 Free G,(v19-v24),Slope(14);
47
48 Equal G,(v1-v6),Slope(11);
49 Equal G,(v7-v12),Slope(12);
50 Equal G,(v13-v18),Slope(13);
51 Equal G,(v19-v24),Slope(14);
52
53 Equal D,(a1-a4),Slope(1)

165



8.3.2 Replicating Published Examples

Because users are most likely acquainted with fitting DCMs in other programs,
we also provide syntax and output for well-known examples to demonstrate
that comparable parameter estimates may be obtained from flexMIRTTM and
benefits of either computation-time savings or simplicity of syntax are ob-
tained.

The first example is a replication of Example 9.2 presented in Diagnostic
Measurement: Theory, Methods and Applications by Rupp et al. (2010). The
simulated data presented in this example uses 7 dichotomous items that mea-
sure 3 attributes. The Q-matrix given by the authors is duplicated here. With

Table 8.4: Q-matrix for Rupp, Templin, & Henson’s Example 9.2

Item Attribute 1 Attribute 2 Attribute 3
Item 1 1 0 0
Item 2 0 1 0
Item 3 0 0 1
Item 4 1 1 0
Item 5 1 0 1
Item 6 0 1 1
Item 7 1 1 1

the Q-matrix, we are now able to generate our flexMIRTTM DCM syntax.

Example 8-5: Rupp, Templin, & Henson - Example 9.2

1 <Project>
2 Title = "Rupp Templin Henson Example 9.2";
3 Description= "Saturated LDCM model - 7 items, 3 attributes";
4
5 <Options>
6 Mode = Calibration;
7 MaxE = 20000;
8 Etol = 1e-6;
9 MaxM = 50;

10 Mtol = 1e-9;
11 GOF = Extended;
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12 SE = REM;
13 SaveCOV = Yes;
14 SavePRM = Yes;
15 SaveSCO = Yes;
16 Score = EAP;
17
18 <Groups>
19 %G%
20 File ="ch9data.dat";
21 N = 10000;
22 Varnames = v1-v7,truec;
23 Select = v1-v7;
24 Ncats(v1-v7) = 2;
25 Model(v1-v7) = Graded(2);
26 Attributes = 3;
27 InteractionEffects = (2,3); // generate 2nd- and 3rd-order ints.
28 Dimensions = 7; // 3 main + 3 2nd-order + 1 3rd-order
29
30 %D%
31 DM = G;
32 Varnames = a;
33 Ncats(a) = 8;
34 Model(a) = Nominal(8);
35 Tc(a) =Identity;
36
37 <Constraints>
38 Fix G,(v1-v7),MainEffect;
39 Free G,(v1),MainEffect(1); // 1
40 Free G,(v2),MainEffect(2); // 2
41 Free G,(v3),MainEffect(3); // 3
42 Free G,(v4),MainEffect(1); // 1
43 Free G,(v4),MainEffect(2); // 2
44 Free G,(v4),Interaction(1,2); // 1x2
45 Free G,(v5),MainEffect(1); // 1
46 Free G,(v5),MainEffect(3); // 3
47 Free G,(v5),Interaction(1,3); // 1x3
48 Free G,(v6),MainEffect(2); // 2
49 Free G,(v6),MainEffect(3); // 3
50 Free G,(v6),Interaction(2,3); // 2x3
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51 Free G,(v7),MainEffect(1); // 1
52 Free G,(v7),MainEffect(2); // 2
53 Free G,(v7),MainEffect(3); // 3
54 Free G,(v7),Interaction(1,2); // 1x2
55 Free G,(v7),Interaction(1,3); // 1x3
56 Free G,(v7),Interaction(2,3); // 2x3
57 Free G,(v7),Interaction(1,2,3); // 1x2x3
58
59 Fix D,(a),Slope;
60 Fix D,(a),ScoringFn;
61 Value D,(a),ScoringFn(1),0.0;

The items were simulated as correct/incorrect items, so Ncat= has been
set to 2 and we will fit the 2PLM to all items. As noted in the introduction,
there are 3 attributes measured by the items, so Attributes = 3;. From the
Q-matrix, we can see that Items 4-6 all measure two of the attributes and
Item 7 measures all 3; to accommodate this aspect of the item assignment,
we ask flexMIRTTM to generate all second and third order effects for us via
the InteractionEffects command. Finally, we set Dimensions = 7, as the
total number of dimensions of the model is 3 main effects + 3 second order
interactions + 1 third order interaction.

In the D group, we inform flexMIRTTM that the diagnostic model we are
setting up will be applied to group G, using the DM = G; statement. Within
the D group, we specify that the attribute variable will be called a and that it
has 8 categories, reflecting the 8 possible attribute profiles. Additionally, we
tell flexMIRTTM that the attribute variable will be fit with the nominal model
and we use an identity matrix for the nominal model intercepts.

In the <Constraints> section, we assign items onto attributes according to
the Q-matrix. First, we fix all items to 0 and then free items onto the appro-
priate main effect and interaction terms. For example, from the Q-matrix we
see that Item 4 is informed by attributes 1 and 2 and the interaction of those
attributes. In the <Constraints> section we free Item 4 with the statements
Free G,(v4), MainEffect(1);, Free G,(v4), MainEffect(2);, and Free
G,(v4),Interaction(1,2);. The final three constraints are applied to the
higher-level group, group D. The first two statements fix the slope and scoring
function values and the final Value statement is used to fix the first scoring
function value to 0 for model identification purposes.
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With the syntax created, we can now run the DCM in flexMIRTTM and
turn to the output.
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The output section labeled 2PL Items for Group 1: G presents the item
parameters for the 7 items, with estimated versus fixed at zero loadings mir-
roring the Q-matrix specifications, with the factors labeled a1-a3 representing
main effects for attributes 1 - 3 and a4 - a7 representing the 2nd and 3rd or-
der interactions. For those wishing to compare flexMIRTTM to MPLUS (the
program used to estimate the book example), this item parameter section cor-
responds with the “New/Additional Parameters” section of MPLUS output
and the point estimates agree with those given in Figure 9.15 (pg. 218) of
Rupp et al. (2010).

The next section of interest is labeled Diagnostic IRT Attributes and
Cross-classification Probabilities for Group 1: G, which reports the
estimated proportions of respondents in each attribute profile. This section in
flexMIRTTM corresponds to the MPLUS output section labeled FINAL CLASS
COUNTS AND PROPORTIONS FOR THE LATENT CLASSES... and the reported
values match those given in Figure 9.13 of Rupp et al. (2010).

There are some difference between flexMIRTTM and MPLUS. For exam-
ple, MPLUS fixes the latent variable mean of the last latent class (attribute
profile 8 in this case) to 0, while in flexMIRTTM we have constrained the first
latent class to 0. This results in differences in the latent attribute parameter
estimates, but as we show in the below table these differences are simply a
matter of choice of identification constraints and do not affect the primary
estimates of interest (i.e., the estimated profile proportions).

Table 8.5: Generating Latent Class Mean Values and flexMIRTTM and
MPLUS Estimates for Rupp, Templin, & Henson’s Example 9.2

c1 c2 c3 c4 c5 c6 c7 c8 sum
generating

µ 0 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0
exp(µ) 1 0.367879 0.367879 0.367879 0.367879 0.367879 0.367879 1 4.207277

υ 0.2481 0.0913 0.0913 0.0913 0.093 0.0913 0.0913 0.2481
flexMIRT

µ̂ 0 -1.21583 -0.91595 -1.00082 -1.05552 -0.99914 -0.97495 -0.13578
exp(µ̂) 1 0.296464 0.400136 0.367578 0.348011 0.368196 0.377211 0.87303468 4.030631

υ̂ 0.2481 0.0736 0.0993 0.0912 0.0863 0.0914 0.0936 0.2166
MPLUS

µ̂ 0.136 -1.08 -0.78 -0.865 -0.92 -0.863 -0.839 0
exp(µ̂) 1.145682 0.339596 0.458406 0.421052 0.398519 0.421894 0.432142 1 4.617291

υ̂ 0.2481 0.0736 0.0993 0.0912 0.0863 0.0914 0.0936 0.2166

We will next cover the contents of the requested file that contains the
individual scores.
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As in the previous -sco output, we have given the first 10 cases and have
added a line break and separators. The first two columns of the -sco file give the
group and observation number, similar to a standard flexMIRTTM IRT score
output file. Recall that for this example, there are 3 attributes and 8 possible
attribute profiles. The probability of the respondent having mastered each of
the attributes individually is given, starting after the observation number. For
example, for observation 1, the probability they have mastery of attribute 1
is 0.16, for attribute 2 it is 0.02 and for attribute 3 it is 0.60. The next three
columns are the estimated SEs for those probabilities, respectively. The last
six entries on the first line of each observation contain the unique elements of
the estimated attribute variance/covariance matrix.

Finally, on what has been moved to the second line for each respondent (but
is a continuation of the same in the actual -sco file), the posterior probabilities
for each of the attribute profiles (8 possible for this example) are given. For
observation 1, the posterior probability of being in attribute profile 1 is 0.30,
the probability of being in attribute profile 2 is 0.52 and so on. The order in
which the probabilities are given matches the order used in the output table
“Diagnostic IRT Attributes and Cross-classification Probabilities.” Referring
to the output presented for this example, we find that attribute profile 1
corresponds to 0 0 0 (meaning no attributes are mastered) and attribute profile
2 corresponds to 0 0 1 (meaning only attribute 3 has been mastered), etc..
After the probabilities for each of the attribute profiles are presented, the
most likely attribute profile for the respondent is given; for respondent 1 that
is attribute profile 2, for respondents 6 and 7, that is attribute profile 8. The
last three values given in the -sco file are the higher-order latent variable point
estimate followed by the SD and variance for that estimate. In this case, all
individual theta estimates for the higher-order variable are zero and all SD
and variance estimates are 1.00 because the nominal model was fit, which has
zero slope and is a reparameterization of the profile probabilities.
Unstructured Higher-Order Latent Space

It is also possible to the fit DCMs in flexMIRTTM without using the higher-
order latent variable at all. This is accomplished by removing all references to
the D group in setting up the model. We present this syntax below. The only
changes are the removal of the %D% group from the <Groups> section as well
as omitting the parameter constraints that were applied to that group.
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Example 8-6: Rupp, Templin, & Henson - Example 9.2 without D group

1 <Project>
2 Title = "Rupp Templin Henson Example 9.2";
3 Description= "Saturated LDCM model - 7 items, 3 attributes";
4
5 <Options>
6 Mode = Calibration;
7 MaxE = 20000;
8 Etol = 1e-6;
9 MaxM = 50;

10 Mtol = 1e-9;
11 GOF = Extended;
12 SE = REM;
13 SaveCOV = Yes;
14 SavePRM = Yes;
15 SaveSCO = Yes;
16 Score = EAP;
17
18 <Groups>
19 %G%
20 File ="ch9data.dat";
21 N = 10000;
22 Varnames = v1-v7,truec;
23 Select = v1-v7;
24 Ncats(v1-v7) = 2;
25 Model(v1-v7) = Graded(2);
26 Attributes = 3;
27 InteractionEffects = (2,3); // generate 2nd- and 3rd-order ints.
28 Dimensions = 7;// 3 main + 3 2nd-order + 1 3rd-order
29
30 <Constraints>
31 Fix G,(v1-v7),MainEffect;
32 Free G,(v1),MainEffect(1); // 1
33 Free G,(v2),MainEffect(2); // 2
34 Free G,(v3),MainEffect(3); // 3
35 Free G,(v4),MainEffect(1); // 1
36 Free G,(v4),MainEffect(2); // 2
37 Free G,(v4),Interaction(1,2); // 1x2
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38 Free G,(v5),MainEffect(1); // 1
39 Free G,(v5),MainEffect(3); // 3
40 Free G,(v5),Interaction(1,3); // 1x3
41 Free G,(v6),MainEffect(2); // 2
42 Free G,(v6),MainEffect(3); // 3
43 Free G,(v6),Interaction(2,3); // 2x3
44 Free G,(v7),MainEffect(1); // 1
45 Free G,(v7),MainEffect(2); // 2
46 Free G,(v7),MainEffect(3); // 3
47 Free G,(v7),Interaction(1,2); // 1x2
48 Free G,(v7),Interaction(1,3); // 1x3
49 Free G,(v7),Interaction(2,3); // 2x3
50 Free G,(v7),Interaction(1,2,3);// 1x2x3

With respect to the output, presented next, while there are some slight
changes in the estimates, the reported point estimate values for the item pa-
rameters remain largely unchanged from the calibration that employed the
higher-order latent variable. Differences in the estimated profile probabilities
are not seen until the 4th or 5th decimal place. If one looked at the -sco file,
there are also only slight changes to the reported values; the most noticeable
difference between the -sco file from the model employing the higher-order
variable and the current example is that final three values discussed in the
previous -sco file (the higher-order latent variable point estimate, SD, and
variance estimates) are no longer present.
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de la Torre Subtraction Example

In a demonstration of a higher order latent trait DCM to non-simulated data,
de la Torre and Douglas (2004) fit a higher-order DINA model to a 20-item
fraction subtraction test given to 2144 examinees. In the noted paper, an 8
attribute model was estimated using MCMC, with final parameter estimates
based on averaging the estimates from 10 parallel chains, each with 20000
iterations of which the first 10000 were discarded as burn-in. We provide syn-
tax and output of a flexMIRTTM replication of this analysis, using a publicly
available subset of the noted data (N = 536).

Example 8-7: de la Torre Subtraction Syntax

1 <Project>
2 Title = "Tatsuoka Subtraction Data";
3 Description= "Restricted Higher-order DINA Model";
4
5 <Options>
6 Mode = Calibration;
7 MaxE = 20000;
8 MaxM = 5;
9 Mtol = 0;

10 Etol = 1e-5;
11 GOF = Extended;
12 SE = REM;
13 SaveCOV = Yes;
14 SavePRM = Yes;
15 SaveSCO = Yes;
16 Score = EAP;
17 Processors = 4;
18 NewThreadModel = Yes;
19
20 <Groups>
21 %G%
22 File ="subtraction.csv";
23 Varnames = v1-v20;
24 Ncats(v1-v20) = 2;
25 Model(v1-v20) = Graded(2);
26
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27 Attributes = 8;
28 Generate = (4,6,7),(4,7),(2,3,5,7),(2,4,7,8),(1,2,7),(2,5,7,8),
29 (2,5,7),(7,8),(2,4,5,7), (2,7),(1,7),
30 (2,5,6,7),(1,2,3,5,7),(2,3,5,7);
31 Dimensions = 22; // 8 MEs + 14 generated higher ord ints
32
33 %D%
34 Varnames = a1- a8;
35 DM = G;
36
37 <Constraints>
38 FixG, (v1-v20),MainEffect;
39 Free G,(v1),Interaction(4,6,7); //3rd-order int of attr 4,6,7
40 Free G,(v2),Interaction(4,7); //2nd-order int of attr 4,7
41 Free G,(v3),Interaction(4,7); //2nd-order int of attr 4,7
42 Free G,(v4),Interaction(2,3,5,7);//4th-order int of 2,3,5,7
43 Free G,(v5),Interaction(2,4,7,8);//4th-order int of 2,4,7,8
44 Free G,(v6), MainEffect(7); //main effect of attr 7
45 Free G,(v7),Interaction(1,2,7); //3rd-order int of attr 1,2,7
46 Free G,(v8), MainEffect(7); // main effect of attr 7
47 Free G,(v9), MainEffect(2); // main effect of attr 2
48 Free G,(v10),Interaction(2,5,7,8); //4th-ord int of 2,5,7,8
49 Free G,(v11),Interaction(2,5,7); //3rd-order int of attr 2,5,7
50 Free G,(v12),Interaction(7,8); // 2nd-order int of attr 7,8
51 Free G,(v13),Interaction(2,4,5,7); //4th-ord int of 2,4,5,7
52 Free G,(v14),Interaction(2,7); //2nd-order int of attr 2,7
53 Free G,(v15),Interaction(1,7); //2nd-order int of attr 1,7
54 Free G,(v16),Interaction(2,7); //2nd-order int of attr 2,7
55 Free G,(v17),Interaction(2,5,7); //3rd-order int of attr 2,5,7
56 Free G,(v18),Interaction(2,5,6,7); //4th-ord int of 2,5,6,7
57 Free G,(v19),Interaction(1,2,3,5,7);//5th-ord int att 1,2,3,5,7
58 Free G,(v20),Interaction(2,3,5,7); //4th-order int 2,3,5,7
59
60 Equal D,(a1-a8),Slope; // "restricted" higher order model

As with the previous DCM example, the maximum number of E-steps
has been increased from the default, the E tolerance and M tolerance val-
ues have been decreased, and the SE calculation method has been set to
REM in the <Options> section. As noted earlier, these changes are made
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primarily to improve the resulting SE estimates. We have also requested
the newly implemented multi-core processing model be used for this analy-
sis via NewThreadModel = Yes;. This model is requested due to the high-
dimensional nature of the current problem. Additional information regarding
the new thread model is available in the Details of the Syntax chapter.

In the first group section, we have used the more targeted Generate to
construct only those interaction terms which will be used in the model. The
needed interaction effects are generated in the order they will be used for the
items (e.g., item 1 requires the interaction of attributes 4, 6, and 7) but this is
not necessary - as noted earlier, as many interactions as needed may be con-
structed from a single Generate statement and the order in which interactions
are listed does not matter. Counting the interactions specified in the Generate
statement, we find there are 14 interactions needed to correctly assign items
to correspond to the Q-matrix. Adding the 14 interactions with the 8 main
effects gives us a total of 22 latent dimensions in the model.

In the <Constraints> section, all main effect terms are initially fixed to 0
and then Free statements are added to replicate the Q-matrix for the problem
(which may be found in Table 8 on pg. 347 of de la Torre & Douglas, 2004).
Because a DINA is fit to all items, only the highest-order interaction of at-
tributes for each item is specified and main effect terms are specified for only
those items that depend on a single attribute (i.e., items 6, 8, and 9). The
last statement in the <Constraints> section sets the latent attribute slope
parameters to be equal across attributes, producing a restricted higher-order
model.

As with all examples, the full output file is available on the support pae.
The item parameter table for this example is extremely wide (22 latent dimen-
sion columns, an intercept column, and all associated SEs) and is not presented
here due to size. However, we have summarized the flexMIRTTM parameter
estimates in Table 8.6. Please note that the slopes are presented in a single
column in this table for efficiency of space; the estimated slope values are not
all on the same latent dimension, as can be seen in the full output file. In
addition to the flexMIRTTM estimates, we also present the original slippage
and guessing parameter values reported by de la Torre and Douglas (2004)
in their Table 9 and the flexMIRTTM estimates converted to this parameteri-
zation. Comparing the point estimates across the two programs, one notices
some differences but overall the values are quite similar. Regressing the origi-
nal guessing parameter estimates onto the converted flexMIRTTM values gives
an intercept value close to zero (0.004), a regression coefficient on 0.98, and
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an R2 value of 0.99. A similar comparison of the slippage values also results
in a low intercept (0.004), a regression coefficient near 1 (0.99), and a high R2

value (0.99). Given the comparability of the parameter values, it is interesting
to note that flexMIRTTM completed its calibration in 20.5 seconds, highlight-
ing the extreme efficiency that may be obtained when estimating higher-order
DCMs via MML.

Table 8.6: Guessing and Slippage Parameters from flexMIRT and MCMC

de la Torre
flexMIRT & Douglas

Item Intercept (c) Slope (a) g 1 - s g 1 - s
v1 -3.27 5.42 0.04 0.90 0.04 0.90
v2 -3.46 6.72 0.03 0.96 0.03 0.96
v3 -5.60 7.56 0.00 0.88 0.00 0.88
v4 -1.25 3.31 0.22 0.89 0.22 0.89
v5 -0.83 2.36 0.30 0.82 0.30 0.82
v6 -4.68 7.77 0.01 0.96 0.03 0.96
v7 -3.56 4.97 0.03 0.80 0.03 0.81
v8 -0.22 1.67 0.45 0.81 0.44 0.81
v9 -1.51 2.63 0.18 0.75 0.18 0.75
v10 -3.50 4.80 0.03 0.79 0.03 0.79
v11 -2.67 5.18 0.07 0.93 0.07 0.93
v12 -1.93 5.00 0.13 0.96 0.13 0.96
v13 -4.14 4.84 0.02 0.67 0.02 0.67
v14 -3.04 5.71 0.05 0.94 0.05 0.93
v15 -3.41 5.58 0.03 0.90 0.04 0.90
v16 -2.19 4.21 0.10 0.88 0.10 0.88
v17 -3.08 4.92 0.04 0.86 0.04 0.86
v18 -1.95 3.70 0.12 0.85 0.13 0.85
v19 -3.76 4.89 0.02 0.76 0.02 0.76
v20 -4.31 5.95 0.01 0.84 0.01 0.84

Note: g is found from flexMIRT parameters as exp(c)/(1 +
exp(c)) and 1− s is found as exp(c+ a)/(1 + exp(c+ a)).
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CHAPTER 9

Details of the Syntax

This section provides detailed coverage of all the syntax statements and as-
sociated options that are available in flexMIRTTM. Required statements are
listed in bold, optional statements are in normal font. When keywords are
required with statements, the possible options are listed after the statement
and the default setting is underlined. If numeric values are required with a
statement, such as for a convergence criterion, the default value is presented.
If there is no default value, a question mark will denote where values need be
entered.

9.1. The Project Section

Syntax Display 9.1: <Project> section commands

Title = " ";
Description = " ";

Both of these statements must be present in the <Project> section, al-
though the actual content within the quotes may be left blank.

9.2. The Options Section
The <Options> section is where the type of analysis to be conducted is spec-
ified and where technical details of the analysis may be modified, including
convergence criteria, scoring methods, and the level of detail desired in the
output. As indicated by the bold, the Mode statement is the only required
command and determines the type of analysis that will be conducted. If Mode
= Scoring; or Mode = Simulation; is selected, some additional technical
commands, covered in the next group of statements become required. The

181



setting of Progress determines if flexMIRTTM will print detailed progress in-
formation in the console window (e.g., iteration number and log-likelihood
value). TechOut determines if controls values such as tolerance values, pro-
cessing times, names of outputted files, etc. will be printed in the preamble of
the output. NumDec determines the number of decimal places reported for item
parameters in the output file - the default is 2. The other commands allow
for the optional saving of additional output into separate files. SavePRM, the
item and group parameter estimates; SaveSCO, the individual IRT scale scores,
SaveCOV refers to the covariance matrix of the parameter estimates; SaveINF
the Fisher information function values of the items and the test; SaveICC, cate-
gory response probabilites for items and the overall test for unidimensional
models; SaveDBG, additional technical information; SavePCC, the eigenval-
ues of the polychoric correlations matrix, followed by the unique elements of
the polychoric correlation matrix, followed by a table of item thresholds, and
SaveSSP, the normalized summed score posteriors. Note that unless summed
scores (Score = SSC;) or the full gamut of GOF indices (GOF = Complete;)
are requested, the SSP output file will be blank. Each of the these addi-
tional output requests are saved to files with corresponding extensions; that
is, the SaveINF command results in an output file with “*-inf.txt” appended
to the command file name; SaveCOV appends “*-cov.txt”, and so on. With
the SaveEtbl command, users may request that the tables produced by the
last E-step of the Bock-Aitkin expectation-maximization algorithm be saved
to the -dbg output file; note that SaveDBG = Yes; must also be specified to
obtain this additional reporting.

Syntax Display 9.2: <Options> - Engine Mode and Output Statements

<Options>
Mode= Calibration/Scoring/Classical/Simulation;
Progress = Yes/No;
TechOut = Yes/No;
NumDec = 2;
SavePRM = Yes/No;
SaveSCO = Yes/No;
SaveCOV = Yes/No;
SaveINF = Yes/No;
SaveICC = Yes/No;
SaveDBG = Yes/No;
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SaveEtbl = Yes/No;
SavePCC = Yes/No;
SaveSSP = Yes/No;
FactorLoadings = Yes/No;
DMtable = Yes/No;
NormalMetric3PL = Yes/No;
SlopeThreshold = Yes/No;

The FactorLoadings statement is invoked when, in addition to the IRT
parameters, normal metric factor loadings should be printed as part of the
general output file. The factor loading values are converted from the IRT
parameters, as described in Wirth and Edwards (2007), among others.

Specific to DCMs, the command DMtable controls whether the diagnostic
classification probability table is printed in the *-irt file. The default is to print
the table, but this may be modified by changing the command to DMtable=
No;. Modifying this setting may be helpful if the probability table will be
large.

The final two statements in this section are provided primarily to facili-
tate the use of parameter estimates obtained from other programs, but users
may find them convenient for other purposes. Both NormalMetric3PL and
SlopeThreshold are used to print, save out, or read-in parameters that are
in more traditional IRT metrics than the MIRT-compatible logistic metric
flexMIRTTM uses; these keywords are only available for use in conjunction
with unidimensional models.

When NormalMetric3PL = Yes;, the program will print normal-metric
parameter estimates in the output and save those values into the -prm file, if
requested. Specifically, flexMIRTTM will 1) print/save (a/1.702) rather than
the typical logistic metric slope values, 2) instead of the intercept (c = b ∗−a)
flexMIRTTM will print/output the difficulty (b) parameter value, and 3) rather
than the logit-guessing parameter, the program will report/save the customary
g value. Note that even if the normal metric keyword is used during calibration,
any priors that may be specified are applied to the MIRT-compatible metrics
(prior applied to intercept, not difficulty; normal guessing prior still applied to
logit-g distribution, etc). If NormalMetric3PL is set to Yes for a scoring run,
then flexMIRTTM will expect the all parameter values read-in from the -prm
file for scoring to be in the normal metric.

By default, flexMIRTTM prints both the intercept and difficulty parameters
in the output for unidimensional models, but saves only the intercept values
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into a requested -prm file. When SlopeThreshold = Yes;, rather than saving
the intercept values, the program will write the difficulty (b) values to the -
prm file. If SlopeThreshold is set to Yes in conjunction with a 3PL model,
the psuedo-guessing parameters (gs) will be printed/saved, rather than the
default logit-guessing parameter values. Users should be aware that, unlike
the behavior when NormalMetric3PL is used, the SlopeThreshold keyword
has no effect on the metric of the slope; a values printed to the -prm are in
the logistic metric, regardless of the SlopeThreshold setting.

Syntax Display 9.3: <Options> - Technical Specifications

<Options>
...

Score = EAP/MAP/ML/SSC/MI;
MaxMLscore = ?;
MinMLscoree = ?;
Mstarts = Yes/No;
Rndseed =?;
ReadPRMFile = "*.txt";
SE = Xpd/Mstep/SEM/Sandwich/Fisher/FDM/REM;
SmartSEM = Yes/No;
Perturbation = 0.001;
FisherInf = 1, 0.0;
PriorInf = Yes/No;
logDetInf = Yes/No;
Quadrature = 49, 6.0;
MaxE = 500;
MaxM = 100;
Etol = 1e-4;
Mtol = 1e-9;
SEMtol = 1e-3;
SStol = 1e-4;
Processors = 1;
NewThreadModel = Yes/No;
SparseMatrix = Yes/No;

As stated previously, when Mode is set to something other than Calibration,
additional statements are required. It was noted earlier that specifying SaveSCO
= Yes; during a calibration run triggers a combined scoring run. If a scoring
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run is specified, either by explicitly setting Mode to Scoring or implicitly by
requesting a combined scoring run, an IRT scoring method is required. As
may be deduced from the lack of an underlined scoring option, there is no
default. The options available for scoring are Expected A Posteriori (keyword
is EAP), Maximum A Posteriori (keyword is MAP), Maximum Likelihood (key-
word is ML), Multiple Imputation (keyword is MI) which is only available when
Algorithm = MHRM; or Algorithm = MCMC;, and Summed Score Conversions
to EAP scores (keyword is SSC), which in addition to individual scores pro-
vides a conversion table in the -sco output file that translates summed scores
to EAP scale scores.

When using ML scoring, there are two additional commands that must be
employed. Users are required to specify the desired maximum and minimum
scores to be assigned by flexMIRTTM using the MaxMLscore and MinMLscore
keywords, respectively. There are no default values for the ML minimum
and maximum scores. Efforts have been made to make ML scoring as
robust as possible, but it is not recommended for use with multi-
dimensional models. Because ML scoring does not use information
from the population distribution, essential statistical information
about the population distribution (e.g., factor inter-correlations,
means, and variances) is ignored when scoring individual dimen-
sions of MIRT models. Additionally, ML scoring can lead to score
information matrices that are not positive definite, making the SEs
for some estimates undefined.

flexMIRTTM offers a multiple dispersed starting value option for use with
ML and MAP scoring runs. For unidimensional models, the default theta start-
ing value in MAP/ML scoring is 0. When Mstarts = Yes; flexMIRTTM will
do 12 additional restarts using a range of starting values from -2.75 to 2.75,
in step sizes of 0.5. The best solution (as determined by the highest log-
likelihood) will be picked from the 13 values. Note that using Mstarts =
Yes; will increase the time needed to complete scoring, but provides protec-
tion against local modes in 3PL or nominal model scoring.

When Score = MI;, the value of Imputations controls the number plau-
sible values drawn from individual theta posteriors and saved to the -sco file.
Again, note that Score = MI; is only available when Algorithm = MHRM or
Algorithm = MCMC.

When a Simulation run is specified by the Mode command, the random
number generator must be “seeded”. An integer value must be explicitly pro-
vided using the Rndseed command. There is no default value.
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The ReadPRMFile command is used to read parameters values from a text
file to flexMIRT c©, which may be used as starting values for a calibration run,
as fixed item parameters for a scoring run, and as true generating parameter
values for a simulation run. The proper layout for a parameter file is covered
in detail in the previous Simulation chapter.

flexMIRTTM has several options available for computing the standard er-
rors of estimated item/group parameters. The standard error method may be
changed by the user through the SE command. The default method is empir-
ical cross-product approximation (keyword is Xpd). Standard errors may also
be calculated via the supplemented EM algorithm (keyword is SEM; Cai, 2008),
from the Fisher (expected) information matrix (keyword is Fisher), via the
sandwich covariance matrix (keyword is Sandwich), using the forward differ-
ence method (keyword is FDM; e.g., Jamshidian & Jennrich, 2000), or from the
Richardson extrapolation method (keyword is REM; e.g., Jamshidian & Jen-
nrich, 2000). Mstep values from the EM algorithm can be requested although,
technically, the M-step standard errors are incorrect. They tend to be too
small, but under some circumstances (e.g., huge calibration sample size and
thousands of item parameters), it may be more efficient to bypass the more
elaborate (and correct) standard error computations and focus only on item
parameter point estimates.

As an additional note, three of the available standard error methods have
additional options that may be adjusted by the user. By default the supple-
mented EM algorithm SEs come from an optimized window of iterations. If
you find that the SEs are failing to converge in that optimized window, the
optional command SmartSEM may be useful. By setting SmartSEM = No; it
will allow flexMIRTTM to use the full EM iteration history, which may lead
to converged standard errors. The Perturbation command controls a value
used by both the forward difference and Richardson extrapolation methods
of SE estimation. These methods require the selection of a perturbation con-
stant that is used in the denominator of the finite difference approximation;
the choice of this perturbation constant may exert substantial influence on the
accuracy of the final item parameter SE estimates (Tian, Cai, Thissen, & Xin,
2013). As noted above, the flexMIRTTM default of this perturbation constant
is set to 0.001, the value found to produce the consistently least poor esti-
mates from the two methods when studied in both simulations and as applied
to real data (Tian et al., 2013). While the forward difference and Richardson
extrapolation methods are available to users, Tian et al. (2013) found them
to be less accurate than the supplemented EM algorithm SEs when applied to
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standard IRT models, with no noticeable savings with respect to time when
the smart window for the supplemented EM SEs was employed.

For undimensional models, the information function for the individual
items and full scale is printed in the general output (i.e., the “*-irt.txt” file
from calibration, the “*-ssc.txt” file from scoring) using theta values from -2.8
to 2.8, changing by steps of 0.4. The SaveINF option allows the user to output
the information function values to a separate “*-inf.txt” file, which may be
useful for additional computations external to flexMIRTTM or when informa-
tion functions are to be plotted. By default, the “*-inf.txt” file has only one
theta value (at 0.0) saved. The FisherInf command allows the number of
points and the symmetric minimum/maximum values of those points to be
modified. For instance, if information values were desired for 81 points with
theta values ranging from -4.0 to 4.0, the command to obtain this output,
in conjunction with SaveINF = Yes;, would be FisherInf = 81, 4.0;, with
the total number of points listed first and the maximum theta value to be
used listed after comma. Using the PriorInf command, the user controls if
flexMIRTTM includes the contribution from the prior in the test information
output - the default setting of Yes includes the prior contribution.

Note that for multidimensional models when SaveINF = Yes;,
flexMIRTTM will try to print, by default, the trace of the Fisher information
matrix calculated at every grid point as defined by the direct product of the
points specified in the FisherInf command. For high dimensional models,
this is not advisable and may result in flexMIRTTM abandoning the analysis
due to exhausting all available memory resources when attempting to complete
the calculations. If the logDetInf = Yes; command is used, the information
will be taken as the log determinant of the Fisher information matrix, rather
than the trace.

The Quadrature command, which can modify the number of quadrature
points used in the E step of the EM algorithm, is specified in a similar fashion
as the FisherInf command. The default quadrature rule has 49 rectangular
points over -6 to +6.

The next several statements listed within the technical specifications deal
with convergence criteria values and maximum numbers of iterations. MaxE
determines the maximum allowed number of E-steps in the EM algorithm,
MaxM the number of allowable iterations in each of the iterative M-steps. Etol
and Mtol set the convergence criteria for the E- and M- steps, respectively.
SEMtol sets the convergence criterion for the Supplemented EM algorithm used
in calculating standard errors, and finally SStol determines the criterion for
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declaring two summed scores as equivalent (useful for scoring with weights).
There are several optional command statments that users may find valuable

when conducting large analyses, such as batch runs or individual analyses with
high-dimensional models, a large sample, and/or a large number of items to
calibrate/score. The Processors statement lets the user determine how many
processors (threads) flexMIRTTM can utilize; the maximum number of possible
threads is determined by the number of processing cores in your system. When
NewThreadModel = Yes; a multi-core processing model is employed. The new
multi-threading model is an updated implementation of multi-core processing
that may be more efficient for very high-dimensional models with a large num-
ber of quadrature points to evaluate. The level of granularity is smaller than
the legacy threading model implemented in flexMIRT c©. In general, the legacy
threading model trades more memory for speed, and this new model does not
do that nearly as much, so the parallel speed-up may not be as significant as
the classical approach for low dimensional analyses with small to moderate
N. When the NewThreadModel is active, Fine (may be more optimal for
high dimensionality) will be printed in the -irt output file to describe the
Parallelization granularity, while it will be reported as Coarse when the
original threading model is used. Note that the NewThreadModel option is
specific to Algorithm = BAEM and will have no effect on analyses using MCMC
or MH-RM estimation. The command SparseMatrix is implemented primar-
ily for use in large-scale testing situations - when SparseMatrix = Yes; is
used in conjunction with the default cross-product approximation method for
estimating SEs, flexMIRTTM will assume a large and sparse information ma-
trix, leading to time-savings for large calibration runs. When SparseMatrix
= Yes; is used in combination with the new multi-threading model, parallel
speed-up for very large N and many (read, thousands of) items may be much
more significant than the legacy model, due to additional optimizations that
improve memory utilization and work-sharing efficiency. The SparseMatrix
option has no effect on models with Primary, Between, and/or Cluster key-
words in the current implementation. The SparseMatrix = Yes; setting will
be indicated in the -irt file on the line reporting the standard error computa-
tion algorithm as: Cross-product (sparse matrix approximation). User
are encouraged to experiment with the threading options.
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Another subset of commands available in the <Options> section deals with
the calculation and reporting of various GOF and local dependence (LD) in-
dices.

Syntax Display 9.4: <Options> - GOF and LD Indices Commands

<Options>
...
GOF = Basic/Extended/Complete;
CTX2Tb = Yes/No;
LDTblWidth = 10;
SX2Tbl = Yes/No;
MinExp = 1.0;
M2 = None/Full/Ordinal/OrdinalSW/Mixed;
HabermanResTbl = Yes/No;
JSI = Yes/No;
FitNullModel = Yes/No;
StartValFromNull = Yes/No;
...

The GOF statement controls the extent of GOF indices that are reported.
Basic, Extended, and Complete are the three possible levels of GOF report-
ing. Basic, the default value, prints the −2× log likelihood, the AIC/BIC
values, and when appropriate, the likelihood ratio (G2) and Pearson X2 full-
information fit statistics. The Extended option results in all the indices in-
cluded in the Basic reporting, as well as the marginal fit X2 for each item
and standardized LD X2 for each item pair (e.g., Chen & Thissen, 1997). The
last keyword, Complete, prints all indices included in the Extended reporting
and also includes, per group, the item-fit index S −X2 (Orlando & Thissen,
2000). Additionally, under GOF = Complete; mode, an additional statistic
S −D2 is printed below the SSC to EAP conversion table. This statistic is
distributed approximately as a central X2 variable, with degrees of freedom
equal to [(number of summed scores - 1) - 2], and provides a test of the latent
variable distribution normality assumption.

In both the Extended and Complete GOF modes, the standardized LD X2

statistics for each item pair may be suppressed by setting the CTX2Tbl com-
mand to No. As noted in the discussion of the LD statistic values of Chen and
Thissen (1997) in previous chapters, phi correlations are examined to deter-
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mine if difference between the observed and model implied item-correlation is
positive or negative. When polytomous data are involved, there may be times
that the contingency table of two items needs to be collapsed from the edges
to the middle so that the cells are not too sparse. Even if collapsing occurs
for the Chen-Thissen LD calculations, the phi correlations (determining the
”p” or ”n” after each LD value), will be based on the original (non-collapsed)
tables. The LDTblWidth statement is used to control how many variables
wide the LD table will be, with the default value set to 10. If processing the
Chen-Thissen LD matrix values for additional review, users may wish to set
LDTblWidth equal to the total number of analyzed variables to obtain the full
Chen-Thissen LD value matrix that is not broken across multiple sections in
the -irt output file.

The SX2Tbl command is invoked when the user wishes to be able to exam-
ine the detailed item fit tables used in the calculation of the S −X2 statistics.
As described in Orlando and Thissen (2000), when expected frequencies for
responses become small, the accuracy of the X2 approximation deteriorates.
flexMIRTTM employs an algorithm to evaluate the expected probabilities prior
to final calculations and collapse the table when needed. The MinExp com-
mand allows the user to set the value at which expected counts are considered
too small, (the default value for MinExp is set at 1.0) and when expected counts
lower than the value set by MinExp are encountered, the summed score groups
are collapsed towards the center.

The M2 statement requests that the limited-information fit statistics M2,
first introduced by Maydeu-Olivares and Joe (2005) (Full) and expanded in
Maydeu-Olivares, Cai, and Hernandez (2011) (OrdinalSW), Cai and Hansen
(2013) (Ordinal), and Monroe and Cai (2015) (Mixed) be printed. The None
option suppresses M2. It should be noted that, regardless of M2 request, the
M2 values will not be printed unless GOF is set to something other than Basic.
Computationally, users should also be aware that in one of the last steps of
computing the M2, a matrix quadratic form is computed. It is accumulated
in flexMIRTTM with multiple threading enabled (i.e., when Processors is
set to a value greater than 1) to reduce the amount of time required. This
means, however, that the numbers are combined in potentially indeterminate
order if multiple threads are used. Typically this shouldn’t be a problem,
but sometimes the tiny numerical differences can accumulate and lead to lack
of precision large enough (when the resulting matrices are further inverted)
that differences in the final value are noticeable. User’s encountering such a
situation are encouraged to use Processors = 1; to obtain stable and precise
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M2 values.
The command HabermanResTbl is invoked when standardized residuals

for each response pattern, sometimes referred to as Haberman Residuals (see
Haberman, 1979), are desired. In addition to the standardized residuals, the
observed and expected frequencies, as well as the associated EAPs and SD for
each response pattern are also reported in the requested table.

There is an additional LD index that flexMIRTTM can compute with the
command JSI. The statement JSI = Yes; requests that the Jackknife Slope
Index (JSI; Edwards & Cai, 2011), a newer LD detection technique, be cal-
culated. Based on the observation that locally dependent items often exhibit
inflated slopes, the JSI procedure finds, for each item pair, the change in the
slope parameter of item j when item k is removed from the scale. Specifically,
a single JSI values is obtained by

JSIj(k) =
aj − aj(k)
se(aj(k))

, (9.1)

where a is the IRT slope estimate, j indexes the item impacted and k indexes
the removed item and se(aj(k)) is the SE of the item-removed slope parameter.
The resulting n item by n item matrix, with empty diagonals, is inspected by
the user and item pairs with JSI values substantially larger than the other
values should be noted as possibly exhibiting LD.

The final two statements of this group are tied to the Null (independence)
model, needed for incremental fit indices. The FitNullModel command, when
invoked with the keyword Yes, tells flexMIRTTM to fit the Null model and
print the resulting basic GOF measures in the general output file. When the
fitting of the Null model is requested, it becomes possible for the Tucker-Lewis
Index to be calculated. Additionally, when the zero-factor Null model is re-
quested, the resulting parameter values from fitting this model may be used
as starting values for the IRT model of interest by supplying the command,
StartValFromNull = Yes;. Obviously, it is necessary that the Null model is
requested, via the FitNullModel command, for the StartValFromNull com-
mand to be functional.
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Within the <Options> section, there are three commands related to the
implementation of DIF analyses. The first command is a request for a DIF
analysis, DIF. By default, no DIF analysis is conducted, but this may be
modified by the user to request either a comprehensive DIF sweep (keyword is
TestAll), testing all items, or a focused DIF analysis which looks for DIF only
in the candidate items supplied by the user (keyword is TestCandidates).

Syntax Display 9.5: <Options> - DIF Analysis Commands

<Options>
...
DIF = None/TestAll/TestCandidates;
DIFcontrasts = (...);
OrthDIFcontrasts = Yes/No;

If the TestCandidates option is selected, the DIFitems command’s inclu-
sion in the <Groups> section is required. When a DIF analysis is requested by
invoking one of the DIF options, DIFcontrasts becomes a required command.
This command is used to supply flexMIRTTM with the DIF contrast matrix,
which is used in constructing the contrasts among groups. The total number
of contrasts is one fewer than the total number of groups being analyzed. For
a 2 group DIF analyses, that means there is one allowable contrast, which will
typically be of the form DIFcontrasts = (1 -1);. For analyses with more
than 2 groups, any ANOVA contrasts can be specified. The Helmert contrast
(which is orthogonal) is a reasonable choice, (e.g., for 3-groups:

DIFcontrasts = (
2.0 -1.0 -1.0,
0.0 1.0 -1.0);

When group size is highly unbalanced, OrthDIFcontrasts offers additional
re-weighting of the contrast coefficients such that they become orthogonal with
respect to the group sizes (Langer, 2008). This option is turned off by default.
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Finally within the <Options> section, there are several commands that are
specific to or used primarily by the non-BAEM estimation algorithms.

Syntax Display 9.6: <Options> -Alternate Estimation Method-Specific Op-
tions

<Options>
Algorithm = MHRM/MCMC;

//Shared MH-RM and MCMC commands
RndSeed = 1842;
Imputations = 1;
Burnin = 10; MH-RM default / 500; MCMC default
Thinning = 10; MH-RM default / 25; MCMC default
SaveMCO = Yes/No; Note: the -mco file is always written with MCMC
ProposalStd = 1.0;
ProposalStd2 = 1.0;

Score = MI; // Note: all scoring methods can be used,
but Score = MI; is only available when non-BAEM est. is used

//MH-RM-specific commands
Stage1 = 200;
Stage2 = 100;
Stage3 = 2000;
Stage4 = 0;
InitGain = 0.10;
Alpha = 1.0;
Epsilon = 1.0;
WindowSize = 3;
MCsize = 2500;

//MCMC-specific commands or defaults
ItemProposalStd = 0.1;
MaxCycle = 500;

The alternate estimation algorithm are available for calibration runs, scoring-
only runs (particularly for when plausible values/multiple imputation theta
estimates are desired), or combined calibration and scoring runs. To call
the one of the alternate estimation algorithms, only Algorithm = MHRM; or
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Algorithm = MCMC;is required; all other listed commands are optional, with
the default values shown above. However, users should review the de-
scriptions provided in the following pages as there are syntax state-
ments whose defaults should to adjusted on a model-by-model basis
to obtain converged, stable, and trustworthy solutions.

Imputations controls the number of imputations from the MH step per
RM cycle. A larger value will lead to smoother behavior from the algorithm.
In most cases, a value of 1 should be sufficient for obtaining accurate point
estimations, however this number may be increased for better standard errors.
Additionally, when Score = MI;, which is only available with non-BAEM es-
timation, the value of Imputations will also control the number plausible
values drawn from individual theta posteriors and saved to the -sco file.

The Burnin statement controls the number of draws that are discarded
from the start of the MH sampler (in either MH-RM or MCMC estimation).
These draws are discarded to avoid using values that were sampled before
the chain had fully converged to the target distribution. Burnin = 10; tells
flexMIRTTM to discard the first 10 values obtained by the MH sampler.

Thinning refers to the sampling-method based estimation practice of re-
taining only every kth draw from a chain. Thinning is used, in part, to re-
duce the possible autocorrelation that may exist between adjacent draws. The
Thinning statement sets the interval for the MH sampler(in both MH-RM
and MCMC estimation) - meaning if Thinning = 10;, every 10th draw by
the sampler will be retained.

SaveMCO = Yes; is used to save out, when Algorithm = MHRM;, the MH-
RM Stage 1 iteration history or, when Algorithm = MCMC;, the drawn pa-
rameter values into a separate -mco output file. While the -mco file can be
suppressed with MH-RM estimation, it will always be produced when using
MCMC estimation. When using MCMC estimation, the values in the
–mco file should be plotted to examine MCMC chain convergence.
In the -mco file when using MCMC estimation, the columns are the individual
estimated parameters, with parameters reported in parameter number order
(which is printed in the -irt file). The first row of the -mco file are the starting
values for the parameters, the next rows will be the draws discarded as the
burn-in (e.g., if Burnin=250;, the next 250 rows will be draws from those 250
cycles). Following the burn-in rows, the thinned main cycle rows draws are
reported. If Thinning = 10; and MaxCycle = 1000, that means 1000 main
cycle draws will be in the -mco file, but 1000*10 draws were completed to get
those values. Users are directed to Edwards (2010) for an oveview of examining
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MCMC chain convergence and relevant references.
ProposalStd and ProposalStd2 control the dispersion of the Metropolis

proposal densities for the first and second level of the specified model, respec-
tively. If a single level model is specified, only the ProposalStd command
will be used. Although default values of 1.0 have been set for both
of these commands, these values need to be adjusted on a case-by-
case basis. The values used will depend on the complexity of the model, the
number of items, the type of items (e.g., dichotmous, polytomous), and the
model fit to the items (e.g., Graded, 3PL, Nominal). The user should choose
ProposalStd and ProposalStd2 values so that the long-term average of the
acceptance rates (which are printed for each iteration in the progress window)
for level 1 and level 2 (if applicable) are around 0.5 for lower dimensional
models (<= 3 factors) and in the 0.2 - 0.3 range for higher dimensional/more
complex models. Generally speaking, increasing the ProposalStd value will
result in lowered acceptance rates while decreasing the value will result in
higher acceptance rates. Users are directed to Roberts and Rosenthal (2001)
for optimal scaling, choice of dispersion constants, and long-term acceptance
rates of Metropolis samplers.

Stage1 determines the number of Stage I (constant gain) cycles. The
Stage I iterations are used to improve default or user-supplied starting values
for the estimation that occurs in Stage II. Stage2 specifies the number of
Stage II (Stochastic EM, constant gain) cycles. The Stage II iterations are
used to further improve starting values for the MH-RM estimation that occurs
in Stage III. Stage3 sets the maximum number of allowed MH-RM cycles to
be performed.

Stage4 determines the method by which SEs are found. If Stage4 = 0;
then SEs will be approximated recursively (see Cai, 2010b). If a non-zero
value is given then the Louis formula (Louis, 1982) is used directly. If the
Louis formula is to be used, the supplied value determines the number of
iterations of the SE estimation routine; this number will typically need to be
large (i.e., 1000 or more).

InitGain is the gain constant for Stage I and Stage II. If the algorithm
is initially taking steps that are too large this value may be reduced from the
default to force smaller steps.

Alpha and Epsilon are both Stage III decay speed tuning constants. Alpha
is the first tuning constant and is analogous to the InitGain used in Stages
I and II. Epsilon controls the rate at which the sequence of gain constants
converge to zero. Specified Epsilon values must be in the range (0.5, 1], with
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a value closer to 1 indicating a faster rate of convergence to zero.
WindowSize allows the user to set the convergence monitor window size.

Convergence of the MH-RM algorithm is monitored by calculating a window of
successive differences in parameter estimates, with the iterations terminating
only when all differences in the window are less than 0.0001. The default value
of the window size is set at 3 to prevent premature stoppage due to random
variation.

MCSize is the Monte Carlo size for final log-likelihood, AIC, and BIC ap-
proximations.

When using MCMC, the item parameter draws are divided up into indepen-
dent segments in the flexMIRTTM implemented Metropolis-Hastings within
Gibbs set up. ItemProposalStd sets the proposal dispersion for item param-
eter segments.

MaxCycle controls the total number of MCMC draws to be accepted fol-
lowing the specified number of burn-in cycles. For instance, if MaxCycle =
1000 that means that 1000 draws will be printed to the -mco file but the total
number of completed draws will be MaxCycle number of draws multipled by
the specified thinning value.

9.3. The Groups Section
The <Groups> section includes commands for specifying group names, number
of items, models to calibrate, as well as more advanced features, such as com-
mands for setting up the structure of hierarchical or multidimensional models,
as well as empirical histogram priors.

Syntax Display 9.7: <Groups> - General Data/Model Descriptors 1

<Groups>
...
%GroupName%
File= "*.dat/*.txt/*.csv";
Header = Yes/No;
Varnames = vars ;
Select = vars ;
Exclude = vars ;
Missing = -9;
N = ?;
Ncats(vars )= 2;
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Model(vars ) = Graded(2)/ThreePL/Nominal(?)/GPC(?);
Ta(vars ) = Trend/Identity/(...);
Tc(vars ) = Trend/Identity/(...);

Prior to any other group commands, a label must be assigned to a group,
and it will become a token that all subsequent command statements may refer
to. Even if only one group is present it must be given a label. The name
provided to the group is arbitrary and at the discretion of the user; however,
spaces should not be used when naming groups and the chosen name must be
enclosed by percent signs.

The File statement is for specifying the path and file name in which item
response data is held (or to be saved for Simulation runs). The number of
cases in the data file is set using the N statement. The File and N commands
are listed as required here, but there is one exception: When the engine is
placed under Scoring mode, and scoring method SSC is selected, the input
file is optional when only the score conversion table is made without scoring
individuals.

The Header statement is used when the variables names/a header row is
present in the data set that is being read in. Use of Header = Yes; means that
flexMIRTTM will pull the variable names from the first row of the provided
data and will not need to be supplied manually by the user. Note that if
Header=Yes; is present, then a Varnames statement should not be used.

Varnames assigns labels to variables by which they will be referred to later
in commands and in the output. Variable names are separated by commas
following the equals sign of the Varnames statement. When variable names
end with consecutive integers (e.g., v1, v2, ..., v100) a short-cut is available
that can be both time and space saving. Rather than listing all the variables, a
dash between the name of the first variable and the last variable (i.e., v1-v100)
will indicate to flexMIRTTM that all variables between v1 and 100 are desired.

The optional Select and Exclude statements allows for a subset of the
variables initially read from the data file to be submitted to IRT analysis. The
default is for all variables in the datafile to be used for analyses. Select allows
users to specify a subset of the available variables to be analyzed while Exclude
allows users to tell which variables to exclude from analysis. For instance, if
we had variables ID and V1-V12 in our dataset, we could use either Select =
V1-V12; or Exclude= ID; so that flexMIRTTM will not include the ID variable
in the IRT analyses. Note that only one of these statements should be used
in reference to a given dataset; that is, Select and Exclude statement should
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not both be used in reference to the same datafile.
Missing values may be represented by a specific number in data files. The

default missing value is -9, but that may be modified with the Missing com-
mand. However, missing values may only be numeric values between -127 and
127. Common missing value symbols, such as a dot or a blank space will not
be interpreted correctly by the program.

The number of valid response categories observed in the data file is specified
with the NCats statements. Within the parentheses of the NCats statement,
the names of the variables affected by the command are listed. For example,
if Item 24, 28, and 32 - 40 all had four response options, this could be entered
as NCats(v24,v28,v32-v40) = 4; in flexMIRTTM syntax.

The Model command follows the same general format as Ncats, but instead
of placing a number after the equals sign, one of the four keywords for the IRT
model must be chosen. For example, to fit the graded model with four cat-
egories to the hypothetical items previously mentioned, the Model statement
is Model(v24,v28,v32-v40) = Graded(4);. The question marks in paren-
theses following the Graded, Nominal, and GPC keywords in Example Box 8.7
are place-holders for the number of categories the model should accommodate.
When items are of mixed formats (multiple choice, free response, Likert-type
scale), multiple NCats and Model statements may be needed to correctly de-
scribe the data and the chosen IRT models.

The commands Ta and Tc are used in conjunction with the nominal cat-
egories model, supplying contrasts for the scoring function and intercepts,
respectively. The default for both Ta and Tc is a trend contrast matrix (key-
word is Trend), but an identity matrix (keyword is Identity) which allows for
equality constraints, or a user-supplied matrix (denoted by (...) in the syntax
box) may also be employed. A user-supplied intercept contrast matrix was
demonstrated in Example 2.11; a scoring function matrix would be specified
in a similar fashion. Multiple Ta and Tc statements may be supplied, allowing
for a large degree of flexibility in the parameterization of the nominal model.

198



We have covered the required commands within the <Groups> section as
well as several optional commands. There are additional <Groups> section
commands, that although still general purpose, will see more limited use.

Syntax Display 9.8: <Groups> - General Data/Model Descriptors 2

<Groups>
...
Code(vars ) = (?),(?);
Key(vars ) = (?);
CaseID = var ;
FixPrior = Yes/No;
LatentDistribution =Gaussian/EH/KDE;
Bandwidth = 1;
EmpHist = Yes/No;
PosteriorOut = Yes/No;
ItemWeights(vars ) = (?);
BetaPriors(vars ) = ?;
CaseWeight = var ;

The internal representation of item response data in flexMIRTTM is zero-
based (i.e., response options must start at zero and go up). That being said, the
program is capable of recoding the data, when old and new values are specified
with the Code command. If the first 10 items are read from a data file that
had four response options (1, 2, 3, 4), it would be necessary to recode these
to zero-based, prior to fitting the IRT model. The recode statement could be
Code(v1-v10) = (1,2,3,4),(0,1,2,3);. The original values are listed first
and the values to which they should be recoded appear within the second set
of parentheses. If it is necessary to also collapse the responses, so that the
original codes 1 and 2 become a single response option 0 and the original 3
and 4 become a second option 1, that Code command could be Code(v1-v10)
= (1,2,3,4),(0,0,1,1);. Note that recoding does not change the values
of the number of response options in the data file, as defined by the NCats
statements.

The Key statement also provides a specific form of recoding that may be
useful when the observed responses from multiple choice items have been read
in. Rather than writing numerous Code statements to convert the observed
responses into correct/incorrect 0/1 data, the Key statement allows the user
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to provide a scoring key for the items and instruct flexMIRTTM to score the
items internally. For instance, if the correct responses to Items 1 through 4
were 2, 0, 1, and 3, respectively, the Key statement to score these items would
be Key(v1-v4) = (2,0,1,3);. Multiple Code and Key statements are permit-
ted, to easily accommodate situations in which items have variable numbers
of response options or, when scoring a large number of items, multiple scoring
keys would result in greater user-readability of the command file by limiting
command line length. It should be noted that both the Code and the Key com-
mands are completely internal to flexMIRTTM and the original data file will
not be modified. Although flexMIRTTM can do some basic data management,
it is not built to be a data management tool. It is generally advisable to per-
form all necessary data cleaning and data management in a general statistical
software package (e.g., SAS, R, SPSS) before exporting a space-, comma-, or
tab-delimited file for flexMIRTTM analysis.

CaseID is used to specify the variable that provides unique identifiers for
the individuals. If used during scoring, the ID values will be saved to the -sco
file, along with the estimated scores.

The FixPrior statement is used to fix the latent distribution prior to den-
sity values supplied in a -prm.txt file, rather than assuming it is a standard
normal prior. These supplied values will define the height of the rectangle at
each quadrature node, such as the density values that may be found through
the use of empirical histograms during calibration. It is expected that the num-
ber of supplied densities values will match the number of quadrature points
specified in the Quadrature statement and will proceed from the density asso-
ciated with the smallest quadrature node up to the density value of the highest
node.

The LatentDistribution statement is used to set how the latent variable
prior/population distribution is handled. The default of LatentDistribution
= Gaussian; will result in an assumed Normal distribution being used. If
the latent distribution is thought to be non-normal, the options of EH (for
empirical histograms [EHs]) or KDE (for kernel density estimation) may be
employed by the user to empirically estimate the shape of the prior distri-
bution. When LatentDistribution = EH, flexMIRTTM will calibrate item
parameters against the estimated EH prior, which is based on the normalized
accumulated posterior densities for all the response patterns at each of the
quadrature nodes, and flexMIRTTM will save the EH prior in the -irt and -
prm file. Additionally, for a concurrent scoring run or any future scoring runs
that use the saved parameter file containing the EH values, the program will
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recognize that the group contains EH weights and will use them to compute
EAPs or SSCs.

Similarly, when LatentDistribution = KDE; is used, the shape of the
prior distribution will be characterized by Gaussian KDE. The shape of the
distribution is characterized by the sum of the standard normal distribution
kernels at each quadrature node; these summed values (collectively, the KDE
prior) are reported in the -irt and -prm output files. The smoothness (or lack
thereof) of the final KD estimated distribution’s shape is controlled by the
Bandwidth statement, which has a default value of 1.0. Generally speaking,
smaller Bandwidth values will result in more jagged distributional shapes while
larger Bandwidth values result in a more smooth shape. Users are encouraged
to try several different bandwidth values to ensure that optimal smoothing
is obtained. As with the use of EH, for a concurrent scoring run or any
future scoring runs that use the saved parameter file containing the KDE
values, the program will recognize that the group contains KDE weights and
will use them to compute EAPs or SSCs. EH estimation may only be used
with single-level unidimensional or bifactor/testlet models. When used with
a bifactor-type model, only the general dimension will be characterized using
the EHs; all other dimensions will be assumed Gaussian. KDE may be used
with unidimensional models or applied to the general factor(s) of a two-tier
model (e.g., Cai, 2010a).

The EmpHist statement is a legacy command, retained for backwards com-
patability, used to enable the EH characterization of the latent variable prior
distribution, simultaneously estimated with the item parameters. EmpHist =
Yes; and LatentDistribution = EH; result in the same behavior from the
program.

The PosteriorOut statement is used to request that flexMIRTTM print
the density of the latent variable posterior distribution at each quadrature
node. This statement will be ignored when MH-RM estimation is used and
is not available for bifactor-type models (specifically when Primary is set to
a value greater than zero) or for multilevel models (when Between is set to a
value greater than zero). The requested density values of the posterior will be
printed to the general *-irt.txt output file.

While category weights are typically taken to be the same that the cat-
egory value (e.g., a response of 3 is assigned a weight of 3), this does not
have to be the case. If alternate category weights for items are desired, the
ItemWeights statement may be used to assign such alternative weights to
items. For dichotomously scored items, a statement of ItemWeights(v1-v3)
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= (0.0,0.5); could be used to assign, for variables v1 to v3, a weight of 0 to
all 0 responses and a weight of 0.5 to all 1 responses. For polytomous items,
the same format is holds. Suppose variables v4 to v8 had 5 possible responses
categories, weights alternate to the default values of 0,1,2,3,4 could be assigned
with the command, ItemWeights(v4-v8) = (0.0,0.1,2.0,3.0,3.1);. Due
to this statement, scores of 0 are assigned a category weight of 0, 1s a weight of
0.1, 2s a weight of 2.0, all 3s given a weight of 3.0 and responses of 4 a weight
of 3.1. Multiple ItemWeights statements are permitted, to handle situations
when the number of responses options per item is variable.

BetaPriors is used to assign item-specific beta distribution priors to the
uniquenesses; the rationale and use of applying priors to the item-uniquenesses
as a method of preventing Heywood cases was discussed in Bock et al. (1988)
on pp. 269-270 . The beta distribution applied in flexMIRTTM has an α

parameter set to the user-specified value and the β parameter fixed at 1.
For example, the statement BetaPriors(v1-v5) = 1.6; would apply to the
uniquenesses of Items 1 through 5 a prior distribution of the form Beta(1.6,
1). Multiple BetaPriors statements are permitted.

The CaseWeight command is needed when response pattern by frequency
(aka grouped) data is entered. It provides the program with the variable name
for the column that contains the number of observations (or weights) for each
response pattern.

202



In addition to the general purpose syntax <Groups> section statements,
there are also specialized commands available, such as for use with MIRT
models including EFAs, diagnostic classification models, and multilevel mod-
els.

Syntax Display 9.9: <Groups> - Specialized Data/Model Commands

<Groups>
...
Dimensions = 1;
Primary = 0;

Between = 0;
Nlevel2 = ?;
Cluster = var ;

Crossed = No/Yes;
Block = var ;

Rotation = None/CFquartimax/CFvarimax/Target;
Oblique = Yes/No;
UnspecifiedTargetElement = 9;
Target = ( ..., ...);

Attributes = ?;
InteractionEffects = (?,?,...);
Generate = (?,?), (?,?),...;
DM = group ;

DIFitems = vars ;

The Dimensions statement is used to specify the total number of dimen-
sions in the model. The default is a single-level unidimensional model (i.e.,
Dimensions = 1;). Changing the number of dimensions is the first step in
setting up multidimensional and multilevel models. The Primary statement
is used to set the number of primary, or general, dimensions/factors that will
be used in a two-tier multidimensional model. In a standard bifactor or test-
let model, Primary=1; although, for complex models, more than one primary
dimension is allowed.
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Several of the syntax statements in the currently discussed syntax display
are closely associated with multilevel models. To initiate the basic structure for
a 2-level model, the Between command is used, which specifies that number of
latent variables at level-2 (aka Between). When multilevel data are simulated,
it is necessary to tell flexMIRTTM how many level-2 units should be generated.
This is specified by the Nlevel2 command. This command is only necessary
when simulating multilevel data, as the program is able to determine the
number of unique level-2 units from the data file, provided that the Cluster
command is employed.

Cluster names the variable that contains unique identifying values for the
level-2 units (e.g., schools in which students are nested).

The Crossed and Block statements are employed when a user wishes to
fit a crossed random effect model (e.g., de Boeck, 2008, Van den Noortgate et
al., 2003), which, by definition, are multilevel models. Crossed=Yes; is used
to tell flexMIRTTM that a crossed random effects model is desired and the
Block statement is used to denote the variable within the dataset that tracks
the feature (often item family) that is “crossed” with persons and fitted as a
random, rather than a fixed, effect. Crossed random effect models are only
available when non-BAEM estimation is used.

Four commands are available that are specific to EFA. Rotation is the
keyword that indicates to flexMIRTTM that an EFA is desired, with a default
value of Rotation = None; indicating a CFA should be fit. The available
rotations are Crawford-Ferguson (CF) family Quartimax, CF-Varimax, and
target rotation (e.g., Browne, 2001). Each of these rotations may be orthogonal
(uncorrelated factors) or oblique (correlated factors), as determined by the
Oblique statement, which defaults to “Yes.” Note that the initial extraction
values for an EFA (that is, the unrotated solution) are always printed in the
-irt output file. Therefore, if an unrotated EFA solution is desired, users must
set Rotation to something other than “None” to trigger the EFA module, but
may then simply ignore the rotated solution in the output.

When target rotation is specified, it become required that a target factor
pattern matrix be supplied. This is done via the Target statement, which ac-
cepts the matrix submitted within parentheses with spaces separating elements
and commas delineating row ends. The target matrix should be comprised of
only 0s and the value set via the UnspecifiedTargetElement command, which
has a default of 9. Note that UnspecifiedTargetElement may be changed to
an alternate value, but it is restricted to numeric values between -127 and 127.
An example of a target matrix may be found in both the MIRT and MH-RM
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chapters of this manual. The next four commands are used exclusively for the
fitting of diagnostic classification models. Attributes is used to set the num-
ber of main effects present in the skill space that is being assessed. This is the
keyword that triggers flexMIRTTM to model discrete latent variables, rather
than the default continuous latent variables. InteractionEffects instructs
flexMIRTTM to automatically generate all possible interaction effects. For in-
stance, with 4 attributes one may specify InteractionEffects = (2,3,4);
and, in addition to the 4 main effects, the program with also generate the 2nd,
3rd, and 4th order interaction terms of the attributes as dimensions of the
model. If only the second order interaction effects are desired, those would be
created by specifying InteractionEffects = (2);.

Similar to the InteractionEffects keyword, Generate sets up higher or-
der interactions effects. However, rather than creating all possible interaction
effects Generate creates only those effects specified in the statement. For ex-
ample, Generate = (3,6,7),(4,7); is used to generate the interaction effect
of attributes 3, 6, and 7 and, separately, the interaction effect of attributes 4
and 7. There is no limit to the number of interaction effects that may be
specified in a Generate statement and the order in which interaction effects
are specified does not matter.

The DM command stands for “diagnostic model” and is used to set the
group containing observed data - this is the group to which the higher-order
DM will be applied. The DM command is optional; one could, in principle, fit
a model without the DM (higher-order) latent variables.

The final command DIFitems from the “Specialized Data/Model Com-
mands” section provides flexMIRTTM with the names of items to be tested for
DIF during a targeted DIF analysis. This command is required when DIF=
TestCandidates; has been invoked in the <Options> section. The names of
candidate items are simply listed, separated by commas, (e.g., DIFitems =
v1-v4,v8;)
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Syntax Display 9.10: <Groups> - Commands Available only with non-
BAEM estimation

<Groups>
...
Covariates = vars /0;
L2covariates = 0;
CovariateCorr = 0;

Within the <Groups> section there are handful of commands, regarding co-
variates, that are only available when one of the alternate estimation methods
is used. During calibration, Covariates is used to supply flexMIRTTM with
a list of variables that will serve as predictors of the latent variable estimates.
It is expected that continuous variables will be supplied as covariates or, for
categorical covariates, that appropriate codings (effect coding, dummy coding,
etc.) into multiple variables have been constructed prior to being supplied to
flexMIRTTM. When used in simulation, Covariates is used to specify the
number of covariates that should be generated as part of the model.

The L2covariates statement is used to tell flexMIRTTM how many of
the covariates supplied in the Covariates should be used as predictors of
the level-2 (Between) latent variables. For example, during calibration when
L2covariates is set to a non-zero value, the first x variables listed in the
Covariates statement will be implemented as predictors of the higher-level
latent variable(s). When used in with a simulation, L2covariates indicates
that the first x simulated covariates will apply to level-2 factors only.

CovariateCorr is used during a simulation run to set the generating cor-
relation value among the simulated covariates. Even when more than 2 covari-
ates are present, CovariateCorr should still be a single value - for simplicity,
flexMIRTTM is will induce only an equicorrelation matrix among covariates.

9.4. The Constraints Section
Several of the examples in the previous chapters have shown that there is
no required statement in the <Constraints> section, and that it may be left
blank after the (required) section header. However as models become more
complex, especially if they include multiple groups and multiple dimensions,
constraints will more than likely become necessary.

Listed in the left-most column of Table 9.1 are the types of constraints
available. Value indicates the starting or fixed value of a parameter. Free
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indicates a parameter which is freely estimated, Equal indicates parameters
which will be constrained equal, Fix fixes a parameter, Coeff applies a pro-
vided coefficient to a given parameter - enabling proportionality restrictions,
AddConst applies a additive constant to specified parameters, and Prior pro-
vides a prior distribution for that parameter.

Table 9.1: Constraint Commands and Keywords

Constraint Type Parameter Prior Distribution
Free Intercept(?) Normal(µ,σ)
Equal Slope(?) logNormal(µ,σ)
Fix Guessing Beta(α− 1, β − 1)
Value ScoringFn(?)
Coeff Mean(?)
AddConst Cov(?,?)
Prior Beta(?,?)

MainEffect(?)
Interaction(?,?,...)

Presented in the second column of Table 9.1 are the keywords for pa-
rameters that may have constraints applied to them. Intercept refers to
the location parameter. Slope refers to the slope/discrimination parameter.
Guessing is the lower asymptote parameter in the 3PL model. ScoringFn is
the scoring function contrast parameters of the nominal model. Mean and Cov
refer to the mean and covariance matrix elements of the latent variable distri-
bution. Beta refers to the matrix of covariates predicting the latent variables.
MainEffect and Interaction are available so users may employ syntax spec-
ifications that are in keeping with the conceptualization/terminology used in
diagnostic classification models.

The question marks in the parentheses following the parameter keywords
permits the referencing of specific parameters. For example, when there are 4
latent variables in the model, Slope(1) refers to the slope on the first factor,
Mean(2) refers to the mean of the second factor, and Cov(3,2) refers to the
covariance of factors 3 and 2. When an item has 5 categories, Intercept(2)
in a graded model or ScoringFn(3) in a nominal model each refers to specific
item parameters.

For the Free, Equal, and Fix constraints, the general format for applying
restrictions to the model is the same. First, the type of constraint to be applied
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and the group to which it is being applied are listed, followed by a comma. The
items which are affected by the constraint are then specified in parentheses,
followed by another comma and then the keyword for the parameter that is
affected (e.g., Slope, Guessing, etc). For a unidimensional model in Group1,
the slope parameters for v1 through v5 can be set equal using the following
syntax:

Equal Group1, (v1-v5), Slope;

If there is only one group, the group name can be omitted.

Equal (v1-v5), Slope;

The following syntax fixes the second slope of (v1,v2) to 0 (the default value
unless modified by Value statement).

Fix (v1,v2), Slope(2);

The following syntax fixes the second factor mean of Group2 to 0 (the default
value unless modified by Value statement).

Fix Group2, Mean(2);

The following syntax fixes the second factor variance of Group2 to 1 (the
default value unless modified by Value statement).

Fix Group2, Cov(2,2);

The following syntax fixes the covariance between factors 2 and 3 in Group2
to 0 (the default value unless modified by Value statement).

Fix Group2, Cov(3,2);

The following syntax allows the first latent factor to be predicted by the second
covariate in Group2.

Free Group2, Beta(1,2);

The following syntax fixes the first scoring function contrast for (v1) to 1 (the
default value unless modified by Value statement).

Fix (v1),ScoringFn(1);

The following syntax fixes the second scoring function contrast for (v1) to 0
(the default value unless modified by Value statement).
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Fix (v1),ScoringFn(2);

The following syntax frees the third slope for items v1-v5 in Group2.

Free Group2,(v1-v5),Slope(3);

Cross-group constraints are also allowed. The basic constraint format is still
used, with the addition of the constraint in the second group following a colon.
In one of our multiple group examples, it was desired that the item parameters
for 12 items be the same across the 2 groups. To accomplish this, the Equal
constraints in the following excerpted code were employed.

Syntax Display 9.11: Constraints Across Groups, Specifying a Prior Distri-
bution, and Freely Estimating Theta

...
<Constraints>
Free Grade3, Mean(1);
Free Grade3, Cov(1,1);
Equal Grade3, (v1-v12), Guessing:

Grade4, (v1-v12), Guessing;
Equal Grade3, (v1-v12), Intercept:

Grade4, (v1-v12), Intercept;
Equal Grade3, (v1-v12), Slope:

Grade4, (v1-v12), Slope;
Prior Grade3, (v1-v12), Guessing : Beta(1.0,4.0);

As can be seen, for the three constraints that set the item parameters
across groups, the general constraint format of type group, (items), parameter
is maintained for both groups, with a colon between the listing for the Grade
3 and Grade 4 groups. If more than two groups are to be constrained equal,
additional colons, followed by the additional group information may be added.
Also of note in this syntax excerpt, by default, the latent variable mean vector
and covariance matrix are initially constrained to zero and identity, respec-
tively. Using constraints, the first two lines in the example above specify that
the mean and variance for the latent trait are to be freely estimated in the
Grade 3 group, relative to the fixed values of the Grade 4 group which has a
mean of 0 and variance of 1.
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The format of the Value, Coeff, and AddConst constraints is similar to
the previous types of constraints but with an additional piece of information.
After specifying the constraint type, group, items, and parameter, a numeric
value is specified as well which is separated from the parameter keyword by a
comma. For example, a coefficient command could be something like, Coeff
G, (v1-v10), Slope, 1.702; where we are applying a coefficient, in group
G, for variables v1-v10, of 1.702 to the slopes, effectively incorporating the
scaling constant D into the estimation.

The Value statement is a more general purpose constraint command. In
calibration mode, it can be used to specify the values of fixed parameters or
it can be used to supply starting values. In scoring mode, instead of using a
parameter file (which is more convenient), one can in principle use the Value
statement to fix item and group parameters to the calibrated estimates. In
simulation mode, the Value statement can be used to specify generating pa-
rameters. For a Value constraint on one or more parameters, if the parameters
are free, the numeric values supplied become starting values. If the parameters
are fixed, Value can be used to change the default fixing values. For example,
for a unidimensional model in a single group, the following syntax results in a
set of constraints that fixes the item slopes to 1.0 and then frees the estimation
of the variance of the latent variable, effectively creating a Rasch-type model.

Fix (v1-v5), Slope;
Value (v1-v5), Slope, 1.0;
Free Cov(1,1);

For applying prior distributions, the format is quite similar to the other
constraints, but with the addition of a distribution type (and its associated
pair of parameter values) after a colon. The syntax still follows the general
constraint format of type group, (items), parameter, with the addition of the
requested prior distribution following a colon. In the across groups constraint
example previously used, we specified a beta prior for the guessing parameters.
The prior chosen was a beta distribution with α− 1 = 1.0 and β− 1 = 4.0. As
noted in Table 9.1, the Normal distribution and the logNormal distributions
are also available when assigning priors. For the Normal, the prior mean
and standard deviation are needed. For the logNormal, the prior mean and
standard deviation on the logarithmic scale are needed. For the Normal prior,
if it is used on the guessing parameter, it is in fact imposed as a logit-normal
prior on the logit of the guessing probability.
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CHAPTER 10

Models

In this chapter, some more technical aspects of the IRT model implemented in
flexMIRTTM are discussed. We begin with a generalized formulation, focusing
on the linear predictor portion of the model. More specific issues are discussed
next.

10.1. A Generalized Formulation
Consider a linear predictor for a level-1 unit i (e.g., individual) in level-2 unit
j (e.g., school) in a group g (e.g., country):

ηijg = AB
g θjg + AW

g θijg,

where ηijg is an ng × 1 vector of linear predictors of the ng items in this group,
AB
g is an ng × p matrix of item slopes on the p level-2 (between) latent dimen-

sions or latent attributes (and interaction terms), and AW
g is an ng × q matrix

of item slopes on the q level-1 (within) latent dimensions or latent attributes
(and interaction terms), with θjg and θijg being the between and within latent
dimensions or attributes (and attribute interactions). Note that both AB

g and
AW
g are implicitly assumed to be functions of d unknown structural param-

eters in ξ, subject to appropriate identification conditions or user specified
constraints.

At the item level, the IRT model is a conditional density fξ(yijkg|ηijkg) =
fξ(yijkg|θjg, θijg), where k = 1, . . . ,ng and yijkg is the item response to item
k from level-1 unit i in level-2 unit j in group g. Conditionally on the latent
variable levels the item responses are independent such that

fξ(yijg|θjg, θijg) =
ng∏
k=1

fξ(yijkg|θjg, θijg).
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To introduce latent covariates, we consider the following regression model(
θijg
θjg

)
= B

(
x′ijg
x′jg

)
+

(
εijg
εjg

)
,

where xijg is the vector of level-1 fixed covariates for level-1 unit i in level-2
unit j and xjg is the vector of level-2 covariates for level-1 unt j, and ε’s contain
the disturbance terms for latent variables at each level. The parameters in B
and error covariances of ε are modeled as structural parameters as part of
ξ. In general, it would not make sense to regress a level-2 latent variable on
level-1 covariates.

Let the distribution of θijg be fξ(θijg|xijg, xjg). The level-1 latent variables
can be integrated out as

fξ(yijg|θjg, xijg, xjg) =
∫
fξ(yijg|θjg, θijg)fξ(θijg|xijg, xjg)dθijg.

Assuming further conditional independence of level-1 units on θjg, the marginal
distribution (given fixed covariates) of all item responses in a level-2 unit is

fξ(Yjg|Xjg) =
∫ Nj∏
i=1

fξ(yijg|θjg, xijg, xjg)fξ(θjg|xjg)dθjg,

where Nj is the number of level-1 units in level-2 unit j, fξ(θjg) is the dis-
tribution of the level-2 latent variables, and Yjg = {y1jg, . . . , yNjjg} is the
collection of item response patterns for all ng items from the Nj level-1 units
in level-2 unit j of group g. Similarly, Xjg collects together all the level-1 and
level-2 fixed covariates.

Once the item responses are treated as fixed upon observation, the marginal
likelihood of Yjg is defined as

L(ξ|Yjg, Xjg) = fξ(Yjg|Xjg).

Taking logs and summing over the (assumed) independent level-2 units, as
well as groups, the marginal log-likelihood for the structural parameters is

logL(ξ|Y1, . . . , Yg, X1, . . . , Xg) =
G∑
g=1

Jg∑
j=1

L(ξ|Yjg, Xjg),

where G is the number of groups, Jg is the number of level-2 units in group
g, and Yg = {Y1g, . . . , YJgg} is the collection of item response patterns for
all level-1 and level-2 units in group g, and Xg = {X1g, . . . , XJgg} collects
together the covariates.
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10.2. Item Response Models
For the kth row in ηijg, the linear predictor is equal to ηijkg = aBkgθjg+aWkgθijg,
where aBkg is the set of p slopes on the between latent variables and aWkg is the
set of q slopes on the within latent variables.
10.2.1 Model with Pseudo-Guessing Parameter

This is the multilevel and multidimensional extension of the 3PL model. Let
the correct/endorse (1) response probability be

Pξ(yijkg = 1|ηijkg) = guesskg +
1− guesskg

1 + exp[−(ckg + ηijkg)]
,

where guesskg = 1
1+exp[−κkg ]

and in which guesskg is the item-specific pseudo-
guessing probability for item k in group g and ckg is the group- and item-
specific intercept. Consequently, Pξ(yijkg = 0|ηijkg) = 1.0 − Pξ(yijkg =
1|ηijkg).
10.2.2 Graded Response Model

Suppose item k has K graded categories. Let the cumulative response proba-
bilities be

Pξ(yijkg ≥ 0|ηijkg) = 1.0,

Pξ(yijkg ≥ 1|ηijkg) =
1

1 + exp[−(ckg,1 + ηijkg)]
,

...
Pξ(yijkg ≥ K − 1|ηijkg) =

1
1 + exp[−(ckg,K−1 + ηijkg)]

,

Pξ(yijkg ≥ K|ηijkg) = 0.0,

where the c’s are item intercepts and the boundary cases are defined for con-
sistency. Then the category response probabilities are

Pξ(yijkg = l|ηijkg) = Pξ(yijkg ≥ l|ηijkg)− Pξ(yijkg ≥ l+ 1|ηijkg).

10.2.3 Nominal Categories Model

The nominal model fit by flexMIRTTM is the multilevel extension of the repa-
rameterized nominal model described by Thissen et al. (2010) and subse-
quently revised by Thissen and Cai (2016) to allow for dimension-specific
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scoring functions that may be useful for response style analysis (Falk & Cai,
2016). The dimension-indexing creates some deviations from the more general
and standard notation used throughout so we will only discuss the less gen-
eral case described by Thissen et al. (2010) with dimension-invariant scoring
function values. Users interested in response style modeling are encouraged
to consult Thissen and Cai (2016) for the full details. Suppose item k has K
nominal categories. Category l’s response probability is defined as

Pξ(yijkg = l|ηijkg) =
exp(skg,lηijkg + ckg,l)∑K−1

m=0 exp(skg,mηijkg + ckg,m)
,

where skg,l is the scoring function value for category l and ckg,l is the intercept
value for category l. Dropping the kg subscript for a minute, Thissen et al.
(2010) pointed out that for identification, the following restrictions should be
in place: s0 = 0, sK−1 = K − 1, c0 = 0. This can be accomplished by
reparameterizaton. Let

s =


s0
...

sK−1

 = Ta

(
1
α

)
, and d =


c0
...

cK−1

 = Tcγ.

The vector α is a (K − 2)× 1 vector of scoring function contrasts that defines
the ordering of categories, and γ is a (K − 1)× 1 vector of intercept contrasts.
The matrices Ta and Tc are fixed K × (K − 1) matrices of contrast coeffi-
cients. By an appropriate choice of T, the identification restrictions will be
automatically satisfied. Thissen et al. (2010) propose the use of the following
linear-Fourier contrast matrix

T =



0 0 · · · 0
1 t2,2 · · · t2,(K−1)
2 t3,2 · · · t3,(K−1)
... ... ...

K − 1 0 · · · 0

 ,

where a typical element tl,m for l = 1, 2, . . . ,K and m = 1, 2, . . . ,K − 1 takes
its value from a Fourier sine-series:

tl,m = sin
{
π(l− 1)(m− 1)

K − 1

}
.
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For instance, for K = 4, the contrast matrix is

F =


0 0 0
1 .866 .866
2 .866 −.866
3 0 0

 ,

and for K = 5, the contrast matrix is

F =


0 0 0 0
1 .707 1 .707
2 1 0 −1
3 .707 −1 .707
4 0 0 0


For the nominal model, one can verify that identification conditions are all
satisfied. For the GPC model, all the α contrasts are set to zero.
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APPENDIX A

Quick-Start Installation and User Guide

This guide is designed to provide an overview for installing flexMIRTTM from
the webpage and initializing the program for use.

A.1. Installing flexMIRT
To obtain the flexMIRTTM installer, you must first register for an account
on the VPG Store. The registration page may be found by selecting the
My Account link in the flexMIRTTM website banner or visited directly at
https://store.vpgcentral.com/. From your account page, you will be able
to change your password, view your current flexMIRTTM license and expi-
ration date information, manage licenses on your various computers (with a
purchased academic license users are allowed up to 3 separate installs of the
program), as well as make payments for new or renewed licenses.

217

https://store.vpgcentral.com/


After selecting Register, you will be taken to the registration page and
asked to enter your name, email address, and other information, including
your desired password.

Once you have submitted this information via the Register button, an email
confirming your registration information will be sent to the email address you
provided. The confirmation email will originate from websupport@vpgcentral.com
- please add this email address to your safe list. You may now log in to your
VPG Store account.
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To gain access to the free trial or any paid license you would like to pur-
chase, go to the Licenses page within your account which can be found on the
left hand side of your screen.

Once on the License page, click the “Buy Licenses” button - you may
then use the “Add to Cart” buttons under the various flexMIRTTM versions
to purchase a full license (Academic or Standard) at this time or select the
“flexMIRT- Trial” which has a cost of $0.00.
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Once you have added you selected version of flexMIRTTM to your cart,
you will be able to begin the check out process. During this process, you will
need to agree to the flexMIRT End User License Agreement (EULA), which
can be reviewed by clicking on the blue link just above the “CHECKOUT”
button. You will not be able to move forward with your purchase until the
license agreement box has been checked.

Once the EULA has been accepted and the “CHECKOUT” button pushed,
you will be taken to the check-out process where you will need to complete
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additional information.
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Complete all information as necessary and use the “CONFIRM” button to
complete your order. Once completed, you will be taken to an order summary
page. You will also receive an email with a copy of your invoice.

Use the “My Account” link at the top of the page to return to your account
home page.
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Go into your Licenses page again and you should now see the license you
just purchased available for use. To access the flexMIRTTM installer, click
the “Manage” button. After selecting Download Software, a pop-up will ap-
pear where you will select the version of flexMIRTTM appropriate for your
computer.

The flexMIRTTM installer should be saved to a folder where you will be able
to locate it later. Locate the downloaded installer (flexMIRTInstaller.msi) and
double-click to activate it. Click “Next” to begin the flexMIRTTM installation
process.
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After agreeing to license terms, the next step of the installer will ask which
folder you wish to install the program into. If you would like flexMIRTTM installed
somewhere other than the default location, this can be accomplished by se-
lecting the “Change” button and directing the installer to the desired folder
location.

Follow the remaining steps, as directed by the installer, until the program
indicates that it has finished installing. Once flexMIRTTM have been installed,
a shortcut will appear on the desktop. Double-click this to initiate the pro-
gram. On the first start-up flexMIRTTM will open a pane where you must

224



register the software; you must supply an installation code associated withyou
flexMIRTTM license, which can be obtained from the VPG Store following the
instructions on the pop-up.

A.2. Using flexMIRT
With the software registered, you are now able to conduct analyses. The
flexMIRTTM support page
(https://vpgcentral.com/software/flexmirt/support-v3-72/) has the User’s
Manual and numerous example syntax command files with accompanying
datasets, to help you become acquainted with the types of analyses that may be
conducted and how command files should be structured. By selecting “New”
under “File”’ or using the “New” icon, a command file containing necessary
statements for a basic analysis opens. Once you have modified this command
file, it must be saved prior to being able to submit the analysis to flexMIRT c©;
the ”Run” button is disabled until the file has been saved to prevent the ex-
ample code from being over-written.

To provide a brief tutorial, we will focus on one of the first examples, found
in the folder Example 3-2. Existing files are opened using the Open command
under the File option of the processing pane, which is the pane opened when
the program is first initiated. Once the desired flexMIRTTM command file
is located and selected, it will be opened in a separate pane, labeled Syntax
Editor: with the file name listed after.

The command file is submitted for analyses by clicking the “Run” button
on the far right of the icon toolbar. flexMIRTTM will print its progress (e.g.,
EM iteration number, etc.) in the Progess pane that will appear beneath the
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syntax and, when complete, will open the Output Viewer pane, which will
contain all results. Additionally, the results are written to an external text
file, which may be opened at a later time with flexMIRTTM or a text editor
such as Notepad.

226



227



APPENDIX B

flexMIRT via the Command Line Interface

This appendix provides a brief overview of using flexMIRTTM via the Com-
mand Line Interface (CLI)/Command Prompt, which may be useful to those
wishing to batch submit a large number of files or to control flexMIRTTM via
another program (e.g., R).

B.1. flexMIRT via the CLI - single file run
Begin by accessing the Command Prompt - a short cut can be found under
the flexMIRT menu (see below).
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The Command Prompt window will open and, for an individial run, all
that remains is to supply the command file name with the appropriate Win-
FlexMIRT call.

If the command file is found in the same folder as the executable, the call
is of the form:

winflexmirt -r mysyntax.flexmirt

where the “-r” tells WinFlexMIRT (the name of the graphical user inter-
face[GUI]) to run in the CLI and mysyntax.flexmirt is the command file
you wish to run. If the command file is found in a different folder or has
spaces in the file name then the full path to the command file must be given
in quotation marks. For example, if we wished to submit the command file
“FL_20item.flexmirt” for analysis and it is located in the folder
“C:\Users\VPG\Documents\FL analyses\Final scale\”, the WinFlexMIRT
call would be:

winflexmirt -r “C:\Users\VPG\Documents\FL analyses\Final
scale\FL_20item.flexmirt”

Once a command file has been successfully submitted, the same progress
information that is shown in the progress pane of the flexMIRTTM GUI will
be printed in the CLI.
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When the run has completed successfully, the output files may be found in
the folder in which the syntax file is located.
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B.2. flexMIRT batch mode
flexMIRTTM also allows for users to submit multiple syntax files via a single
batch file. Batch processing can be accessed via the GUI, under the flexMIRT
menu.

which will open a new pop-up window.
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Users may constuct their batch file by selecting individual files (via the
“Add files” button), selecting whole folders (via the “Add directory” button)
which will add any *.flexmirt syntax files in the folder to the Input Files list,
or by using the “Import List” button. When using the “Import List” button
to import an existing batch file, the file should consist of a single column of
syntax files, in which the user provides the full path and file names of the
command files to be run. When importing an batch file, users should ensure
that the flexMIRTTM syntax files in the batch file ALWAYS be referenced with
the full path. Below is an example batch file, saved as a CSV in Excel. Plain
text files (*.txt) are also permissable and should be arranged such that each
line contains one syntax file path and name.
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Once the batch file has been submitted, progress will be printed in the
Progress pane, as with single analysis runs. If a number greater then 1 is
selected in the "Number of Threads" box, then multiple Progress panes will be
opened. Once flexMIRTTM has processed all of the syntax files named in the
batch, it will report that it has finished the batch and print the total time used.
Users should review all of the Progress pane printing after batch completion,
paying attention to any files in which an issue was encountered, such as the
error reported below for the BROKEN.flexmirt syntax file from a completed
batch run.

The typical output files for the individual runs submitted in batch mode
will be in the same folder as the corresponding *.flexmirt syntax file.
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APPENDIX C

flexMIRTTM in an Operational Context

To assist users working with flexMIRTTM in an operational setting, where
calibration and/or scoring runs may include hundreds of items and many
thousands of observations, this appendix describes and demonstrates settings
that can be optimized for large problems, as well discuss other features of
flexMIRTTM that may be useful in an operational setting or that are com-
monly used in an large-scale testing situation.

C.1. Optimizing Estimation Speed
When working with very large item sets and/or sample sizes, it becomes im-
portant to optimatize estimation processes so that analyses can be completed
in a timely fashion. Below we demostrate with three examples, based on the
same simulated dataset of 400 items and 190,000 observations, the time sav-
ings that may be achieved, depending on the flexMIRTTM settings chosen and
the model being used.

Example C-1: Speed Optimatization Examples - Base syntax

1 <Project>
2 Title = "Fit a UIRT 2PL Model";
3 Description= "Using legacy BAEM multi-threading method";
4
5 <Options>
6 Mode = Calibration;
7 SE=Xpd;
8 Processors = 4;
9 NewThreadModel = No; //default value is Yes

10

234



11 <Groups>
12 %Grade2%
13 File ="Group.dat";
14 Varnames = v1-v400;
15 N=190000;
16 Ncats(v1-v400) = 2;
17 Model(v1-v400) = Graded;
18
19 <Constraints>

The Processors statement lets the user determine how many processors
(threads) flexMIRTTM can utilize; the maximum number of possible threads is
determined by the number of processing cores in your system. When multiple
cores are specified for flexMIRTTM to use, the estimation process will be dis-
tributed across those cores/processing units, which can result in the increased
estimation speed/reduced wait time before output files are available. However,
the Bock-Aitkin EM algorithm isn’t easy to parallelize because there is quite
a bit of synchronization needed between E- and M-step; there is usually a
barrier so that processors must wait for all members of the team to finish be-
fore proceeding to the next task. That being said, the originally implemented
multiple-core processing model employed when NewThreadModel = No; may
be optimal for low dimensional analyses with small to moderate N.

Example C-2: Speed Optimatization - Modification 1

1 <Project>
2 Title = "Fit a UIRT 2PL Model";
3 Description= "Using updated BAEM multi-threading
4 method for large data sets";
5
6 <Options>
7 Mode = Calibration;
8 SE=Xpd;
9 Processors = 4;

10 NewThreadModel = Yes; // This is the default
11
12 <Groups>
13 %Grade2%
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14 File ="Group.dat";
15 Varnames = v1-v400;
16 N=190000;
17 Ncats(v1-v400) = 2;
18 Model(v1-v400) = Graded;
19
20 <Constraints>

In the first modification of our speed optimatization example, we have updated
only the NewThreadModel option from No to Yes. When NewThreadModel =
Yes; an updated multi-core processing model is employed. The new multi-
threading model is an updated implementation of multi-core processing that
may be more efficient for very high-dimensional models with a large number
of quadrature points to evaluate. The level of granularity is smaller than the
legacy threading model implemented in flexMIRTTM. In general, the legacy
threading model trades more memory for speed, and this new model does not
do that nearly as much, so the parallel speed-up may not be as significant as the
classical approach for low dimensional analyses. When the NewThreadModel
is active, Fine (may be more optimal for high dimensionality) will be
printed in the -irt output file to describe the Parallelization granularity,
while it will be reported as Coarse when the original threading model is used.
Note that the NewThreadModel option is specific to Algorithm = BAEM and
will have no effect on analyses using MCMC or MH-RM estimation.

Example C-3: Speed Optimatization - Modification 2

1 <Project>
2 Title = "Fit a UIRT 2PL Model";
3 Description= "Using updated BAEM multi-threading
4 method and SparseMartix command";
5
6 <Options>
7 Mode = Calibration;
8 SE=Xpd;
9 Processors = 4;

10 NewThreadModel = Yes; // This is the default
11 SparseMatrix = Yes; // No is the default
12
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13 <Groups>
14 %Grade2%
15 File ="Group.dat";
16 Varnames = v1-v400;
17 N=190000;
18 Ncats(v1-v400) = 2;
19 Model(v1-v400) = Graded;
20
21 <Constraints>

In this example, in addition to the new threading method being employed, the
SparseMatrix command in the <Options> has also been used. The command
SparseMatrix is implemented primarily for use in large-scale testing situa-
tions - when SparseMatrix = Yes; is used in conjunction with the default
cross-product approximation method for estimating SEs, flexMIRTTM will as-
sume a large and sparse information matrix, leading to time-savings for large
calibration runs. When SparseMatrix = Yes; is used in combination with
the new multi-threading model, parallel speed-up for very large N and many
(read, thousands of) items may be much more significant than the legacy
model, due to additional optimizations that improve memory utilization and
work-sharing efficiency. The SparseMatrix option has no effect on models
with Primary, Between, and/or Cluster keywords in the current implementa-
tion. The SparseMatrix = Yes; setting will be indicated in the -irt file on the
line reporting the standard error computation algorithm as: Cross-product
(sparse matrix approximation). User are encouraged to experiment with
the threading options. At present, the use of the SparseMatrix command will
suppress GOF output to Basic reporting level to avoid costly computations
necessary for the derivation of GOF index values.
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Table C.1: Time Comparisons (in seconds) of Thread Models and Use of
SparseMatrix command

Modification 2
Processing Base Modification 1 (NewThreadModel = Yes
Step (NewThreadModel = No;) (NewThreadModel = Yes;) and SparseMatrix = Yes;)
E-step compu-
tations

39.25 95.77 22.64

M-step com-
putations

0.46 0.21 0.24

Standard error
computations

102.67 105.66 14.09

Goodness-of-
fit statistics

0 0 0

Total 142.38 201.64 36.98

As can be seen in the above table, especially for the large n, large K,
low dimensional analyses like the one shown in the examples, there can be
significant time savings in the SE computation step through the combined use
of SparseMatrix = Yes; with NewThreadModel = Yes; in the <Options> of
the syntax. It can also be seen that the NewThreadModel may not always the
best option in terms of efficiency for BAEM estimation; this is why users are
encouraged to experiment with settings to identify the most efficient settings
for each analysis.

C.2. Score Conversion Table from Existing Parameters
A feature that may be useful in the operational context is the creation of a
summed to EAP score conversion (SSC) table (e.g., Cai, 2015) that provides
the most likely EAP score associated with each possible summed score that
can be obtained from the set of items. This SSC table can be generated by
flexMIRTTM without an associated datafile. The syntax below demonstrate
the syntax for such a run, which only requires that the existing item parameters
are provided in the expected -prm file structure (see The Parameter File Layout
section of the Simulation chapter and the Labeled Output Files Appendix for
additional details on -prm file layout).

Example C-4: SSC Table from Existing Parameters

1 <Project>
2 Title = "SSC Table from item prms";
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3 Description= "No data file";
4
5 <Options>
6 Mode = Scoring;
7 Score=SSC;
8
9 ReadPRMFile= "Existing_prms.txt";

10
11 <Groups>
12 %G1%
13 Varnames = v1-v400;
14
15 <Constraints>
16

Note that in the syntax, we do not provide a data file name in the <Groups>
section, nor do we need to provide information related to the number of
categories or item models for each item, as that information is provided to
flexMIRTTM through the parameter file, via the ReadPRMFile statement in
the <Options> section of the syntax. However, users do need to ensure that
the group and variable names provided in the -prm file are the same as those
used in the syntax. Note that it is also possible to construct a SSC table from
a subset of items in the parameter file; the desired items would be specified
via a Select statement in the <Group> secton of the syntax. Users are re-
minded that the SSC tables are only valid for deriving scores for
observations where all items have non-missing responses.
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C.3. ML Scoring Considerations
In operational contexts, it is often mandated that a certain method for cal-
culating person-estimates (i.e., scores) should be used and at some testing /
certification agencies, the preferred method of scoring is the use of maximum
likelihood estimates. ML scores can be requested from flexMIRTTM by setting
Score = ML; in the <Options> section of your syntax.

When using ML scoring, there are two additional commands that must be
employed. Users are required to specify the desired maximum and minimum
scores to be assigned by flexMIRTTM using the MaxMLscore and MinMLscore
keywords, respectively. There are no default values for the ML minimum and
maximum scores and the program will produce an error if Score = ML; is
used without also setting the minimum and maximum allowed values.

Efforts have been made to make ML scoring as robust as possible,
but it is not recommended for use with multi-dimensional models.
Because ML scoring does not use information from the population
distribution, essential statistical information about the population
distribution (e.g., factor inter-correlations, means, and variances) is
ignored when scoring individual dimensions of MIRT models. Addi-
tionally, ML scoring can lead to score information matrices that are
not positive definite, making the SEs for some estimates undefined.
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APPENDIX D

Plotting

In unidimensional IRT, graphs (e.g., tracelines and information curves) form
an integral component of item analysis in practice. flexMIRTTM is built to
handle multilevel and multidimensional IRT models. In this context, there
currently exists no universally accepted consensus with regards to graphical
procedures. We do realize, however, that there is a need for publication quality
graphics and to meet that need flexMIRTTM will now produce upon request,
for unidimensional models only, a separate output file, the *-icc.txt, which
contains the values necessary to construct tracelines in the user’s preferred
plotting program. Please note that the -icc output file is only available
for single factor models.

D.1. Plotting ICCs and TCCs
By including SaveICC = Yes; in the <Options> section of your syntax, users
may request that the -icc.txt file be saved. The available -icc file contains
values for each item and the overall test/scale which may be used to construct
traceline plots. These values are calculated at 121 points over theta value
ranging from -6 to 6 (and are evenly spaced 0.1 apart:−6.0,−5.9,−5.8, ..., 6.0);
the range and number of points reported in the -icc output file is not able to
modified by users.

We provide a labeled -icc file from the first example (2PLM_example.flexmirt)
to demonstrate the meaning of each column.
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Table D.1: Labeled -icc file (excerpt)

Grp # Item # Label Response Category -6.0 -5.9 ...
1 1 v1 0 0.9975 0.9973
1 1 v1 1 0.0025 0.0027
1 2 v2 0 0.9887 0.9873
1 2 v2 1 0.0113 0.0127
1 3 v3 0 0.9938 0.9933
1 3 v3 1 0.0062 0.0067
1 4 v4 0 0.9951 0.9946
1 4 v4 1 0.0049 0.0054
...
1 10 v10 0 0.996 0.9954
1 10 v10 1 0.004 0.0046
1 11 v11 0 0.9958 0.9954
1 11 v11 1 0.0042 0.0046
1 12 v12 0 0.9973 0.997
1 12 v12 1 0.0027 0.003
1 TCC Group1 0 0.0613 0.068

These values can be directly exported to the graphing program of your
choice and item characteristic curves (ICCs)/traceline plots are easily con-
structed, with no additional calculations needed for standard plots. Using the
full set of values provided for the dichotmous item V1, the below plot was
made in Excel.
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To obtain a more typical trace line plot for V1, we can exclude the 0-
response category line such as below.

When requested in conjunction with polytomous models, the values in the
-icc output file may also be used directly to create category response function
plots, such as below (using item V1 of the previous NCS example that used
the GRM).

Test characteristic curves are made by plotting the values in the line labeled
“TCC” in a similar fashion.

D.2. Plotting IIFs and TIFs
Upon request, flexMIRTTM will also output item and test information function
values to a separate *-inf.txt output file. To request information be saved, users
must include SaveINF = Yes; in the <Options> section of their syntax. The
default number of points to be written to the -inf is a single point at theta =
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0; to construct a comprehensive information function plot, users will need to
also include the FisherInf = (?,?); statement, which will tell flexMIRT at
how many points and spread across what range of theta information should be
calculated. For instance, to match the theta values used in the -icc file, the user
would specify FisherInf = (121,6); Because flexMIRTTM will not label the
theta values in the -inf file, it is important for users to know how they are
deteremined: Regardless of the number of points and the minimum/maximum
value specified, flexMIRTTM will always place the theta points evenly across
the range - note that many choices can result in theta values that are spaced
at non-round intervals. For instance, FisherInf = (14,4); would result in
the 14 points being spaced from -4 to 4 at intervals of (4+4)/(14-1) = 0.61538.

We present a labeled version of the -inf from the first syntax example below.
Note that “P” is the label used for the test information values.

Table D.2: Labeled -inf file (excerpt)

Grp # Item # theta1 theta2 ...
1 1 0.0027 0.003
1 2 0.0167 0.0188
1 3 0.0043 0.0047
1 4 0.0053 0.0059
...
1 9 0.0012 0.0015
1 10 0.0069 0.0079
1 11 0.0032 0.0034
1 12 0.0028 0.0031
1 P 1.0691 1.0773
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With the -inf obtained from flexMIRTTM, the information function values
transferred into the plotting program of choice, and the theta values deter-
mined, item information functions (IIFs) and the test information function
(TIF) may be easily plotted. Porting the -inf values from the first example
into Excel, we are able to produce the below IIF for item V1 without requiring
any additional calculations.

The TIF plot may be created in a similar manner, using the values from
the line labeled e “P” of the -inf output file.
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APPENDIX E

Labeled Output Files

Due to the lack of labels in some of the output files that flexMIRTTM creates,
we provide this appendix to give labeled examples of several file examples,
specifically -sco and -prm files. For each example, we will provide labels at the
top of each column, which would not normally appear, and a small selection
of lines from the output file.

Table E.1: Labeled -sco file - EAP scores, 1 Factor

Grp# flexMIRT Obs # θ̂ SE(θ̂)
1 1 -0.179 0.501
1 2 0.957 0.609
1 3 0.033 0.576
1 4 0.957 0.609
1 5 -0.519 0.515

Table E.2: Labeled -sco file - MAP scores, 1 Factor

Grp# flexMIRT # iterations θ̂ SE(θ̂)
Obs # to MAP

1 1 2 -0.150 0.494
1 2 3 0.939 0.564
1 3 2 0.077 0.567
1 4 3 0.939 0.564
1 5 2 -0.489 0.518

Note: Scores from maximum likelihood (Score = ML;) will have a similar "# of
iterations to score" column.
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Table E.3: Labeled -sco file - MI scores, 1 Factor

Imputation # Grp# flexMIRT θ̂

Obs #
1 1 1 -0.504647
1 1 2 1.601748
1 1 3 4.335706
1 1 4 1.212268
1 1 5 1.015626

Table E.4: Labeled -sco file - EAP scores, 2 Factors

Grp# flexMIRT θ̂1 θ̂2 SE(θ̂1) SE(θ̂2) σ̂11 σ̂21 σ̂22
Obs #

1 1 -0.141 -0.466 0.258 0.355 0.066705 0.001763 0.126136
1 2 0.192 1.407 0.281 0.295 0.079119 0.001470 0.087174
1 3 2.023 1.684 0.527 0.392 0.277999 0.015970 0.153786
1 4 1.311 0.840 0.334 0.290 0.111558 0.003131 0.083973
1 5 0.667 1.182 0.262 0.284 0.068758 0.001159 0.080632

Table E.5: Labeled -sco file - EAP scores, 2 Factors with User-supplied ID
Variable

Grp# flexMIRT User ID θ̂1 θ̂2 SE(θ̂1) SE(θ̂2) σ̂11 σ̂21 σ̂22
Obs #

1 1 sub1 -0.141 -0.466 0.258 0.355 0.066705 0.001763 0.126136
1 2 sub2 0.192 1.407 0.281 0.295 0.079119 0.001470 0.087174
1 3 sub3 2.023 1.684 0.527 0.392 0.277999 0.015970 0.153786
1 4 sub4 1.311 0.840 0.334 0.290 0.111558 0.003131 0.083973
1 5 sub5 0.667 1.182 0.262 0.284 0.068758 0.001159 0.080632

Table E.6: Labeled -sco file - MAP scores, 2 Factors

Grp# flexMIRT # of Iterations θ̂1 θ̂2 SE(θ̂1) SE(θ̂2) σ̂11 σ̂21 σ̂22
Obs # to MAPs

1 1 3 -0.146 -0.405 0.245 0.338 0.059838 0.001456 0.114251
1 2 4 0.200 1.409 0.263 0.287 0.068942 0.001183 0.082246
1 3 5 1.838 1.643 0.494 0.368 0.244128 0.011428 0.135356
1 4 4 1.261 0.831 0.296 0.275 0.087689 0.002205 0.075827
1 5 4 0.677 1.190 0.247 0.270 0.061086 0.000914 0.072911
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Table E.9: Labeled -prm File - 3PL with 1 Factor, 3 groups

Type Label Grp # # of Factors Model # of Cats logit g or c c or a a

1 v1 1 1 1 2 -1.33972 -0.68782 1.301362
1 v2 1 1 1 2 -0.96814 -1.29641 1.409536
...

...
...

...
...

...
...

...
...

1 v9 1 1 1 2 -2.79306 0.730972 1.172468
1 v10 1 1 1 2 -1.65629 -0.14263 1.102673
1 v1 2 1 1 2 -1.33972 -0.68782 1.301362
1 v2 2 1 1 2 -0.96814 -1.29641 1.409536
...

...
...

...
...

...
...

...
...

1 v9 2 1 1 2 -2.79306 0.144738 1.172468
1 v10 2 1 1 2 -1.65629 -0.14263 1.102673
1 v1 3 1 2 2 -0.68782 1.301362
1 v2 3 1 1 2 -0.96814 -1.29641 1.409536
...

...
...

...
...

...
...

...
...

1 v9 3 1 1 2 -2.79306 0.730972 1.172468
1 v10 3 1 1 2 -1.65629 -0.14263 1.102673

Type Label Grp# # of Factors Prior µ1 σ11
0 Group1 1 1 0 0 1
0 Group2 2 1 0 0.2 1
0 Group3 3 1 0 -0.2 1.5

Note that for item v1 in group 3, a different model (the 2PL, rather than the
3PL) is used. This is why the item parameter columns “logit g or c” and “c
or a” are labeled as they are; the columns have different meanings, depending
on the model associated with an item.
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APPENDIX F

Licensing Information

Purchasing a license for flexMIRTTM is easy. If you intend to use flexMIRTTM for
academic purposes, simply register at (http://flexmirt.vpgcentral.com/Account/
LogOn and, once logged in, follow the instructions on-screen to download a trial ver-
sion. At any point in your trial, you can log in to your account and purchase a
flexMIRTTM license. Your yearly subscription will begin the moment you purchase
the program. Newer versions of flexMIRTTM will be made available at no cost,
provided a valid license. It is recommended that users periodically log into their
flexMIRTTM account and check if their version is the most current version of the
program available and update if necessary.

Each single-user academic license is good for three installs of flexMIRTTM so you
can easily work with flexMIRTTM on your academic, home, and laptop computers
at no additional cost. If additional installations are required, pricing information
may be obtained by contacting sales@VPGcentral.com.

Your flexMIRTTM license does not automatically renew. You will be asked af-
ter your year with flexMIRTTM if you would like to renew your subscription. If
you desire a different subscription length, please contact sales@VPGcentral.com for
pricing information.

F.1. Commercial use of flexMIRT
This version of flexMIRTTM is intended for non-commercial use only (as de-
fined in the flexMIRTTM End User’s Licensing Agreement). If you are interested in
purchasing flexMIRTTM for commercial use, please contact sales@VPGcentral.com.

F.2. Classroom Discounts for flexMIRT
For educators who are interested in using flexMIRTTM in their classroom, bulk
educational discounts are available. Please contact sales@VPGcentral.com for more
information.

251

http://flexmirt.vpgcentral.com/Account/LogOn
http://flexmirt.vpgcentral.com/Account/LogOn
mailto:sales@VPGcentral.com
mailto:sales@VPGcentral.com
http://flexmirt.vpgcentral.com/Downloads/EULA_FlexMIRT_NONCOMERCIAL.pdf
mailto:sales@VPGcentral.com
mailto:sales@VPGcentral.com


References

Adams, R., & Wu, M. (2002). PISA 2000 technical report. Paris: Organization
for Economic Cooperation and Development.

Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves
using Gibbs sampling. Journal of Educational Statistics, 17 , 251-269.

Andrich, D. (1978). A rating formulation for ordered response categories.
Psychometrika, 43 , 561–573.

Bock, R. D. (1960). Methods and applications of optimal scaling. Chapel Hill,
NC: L. L. Thurstone Psychometric Laboratory.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation
of item parameters: Application of an EM algorithm. Psychometrika,
46 , 443–459.

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor
analysis. Applied Psychological Measurement, 12 , 261–280.

Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects
model for testlets. Psychometrika, 64 , 153–168.

Browne, M. W. (2001). An overview of analytic rotation in exploratory factor
analysis. Multivariate Behavioral Research, 36 , 111–150.

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit.
In K. Bollen & J. Long (Eds.), Testing structural equation models (pp.
136–162). Newbury Park, CA: Sage.

Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment
of need for cognition. Journal of Personality Assessment, 48 , 306–307.

Cai, L. (2008). SEM of another flavour: Two new applications of the supple-
mented EM algorithm. British Journal of Mathematical and Statistical
Psychology, 61 , 309–329.

Cai, L. (2010a). A two-tier full-information item factor analysis model with
applications. Psychometrika, 75 , 581–612.

Cai, L. (2010b). High-dimensional exploratory item factor analysis by a
Metropolis-Hastings Robbins-Monro algorithm. Psychometrika, 75 , 33–
57.

252



Cai, L. (2010c). Metropolis-Hastings Robbins-Monro algorithm for confirma-
tory item factor analysis. Journal of Educational and Behavioral Statis-
tics, 35 , 307–335.

Cai, L. (2015). Lord-Wingersky algorithm version 2.0 for hierarchical item
factor models with applications in test scoring, scale alignment, and
model fit testing. Psychometrika, 80 , 535–559.

Cai, L., & Hansen, M. (2013). Limited-information goodness-of-fit testing
of hierarchical item factor models. British Journal of Mathematical and
Statistical Psychology, 66 , 245–276.

Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized full-information item
bifactor analysis. Psychological Methods, 16 , 221–248.

Celeux, G., Chauveau, D., & Diebolt, J. (1995). On stochastic versions of the
EM algorithm (Tech. Rep. No. 2514). The French National Institute for
Research in Computer Science and Control.

Celeux, G., & Diebolt, J. (1991). A stochastic approximation type EM al-
gorithm for the mixture problem (Tech. Rep. No. 1383). The French
National Institute for Research in Computer Science and Control.

Chen, W. H., & Thissen, D. (1997). Local dependence indices for item pairs us-
ing item response theory. Journal of Educational and Behavioral Statis-
tics, 22 , 265–289.

Choi, H.-J., Rupp, A. A., & Pan, M. (2013). Standardized diagnostic assess-
ment design and analysis: Key ideas from modern measurement theory.
In M. M. C. Mok (Ed.), Self-directed learning oriented assessments in
the Asia-Pacific (pp. 61–85). New York, NY: Springer.

Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests.
Journal of the Royal Statistical Society: Series B, 46 , 440–464.

de Boeck, P. (2008). Random item IRT models. Psychometrika, 73 , 533–559.
de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for

cognitive diagnosis. Psychometrika, 69 , 333–353.
Delyon, B., Lavielle, M., & Moulines, E. (1999). Convergence of a stochastic

approximation version of the EM algorithm. The Annals of Statistics,
27 , 94–128.

Edwards, M. C. (2009). An introduction to item response theory using the
Need for Cognition scale. Social and Personality Psychology Compass,
3/4 , 507–529.

Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory
item factor analysis. Psychometrika, 75 , 474–497.

Edwards, M. C., & Cai, L. (2011, July). A new procedure for detecting depar-

253



tures from local independence in item response models. Paper presented
at the annual meeting of American Psychological Association, Wash-
ington, D.C. Retrieved from http://faculty.psy.ohio-state.edu/
edwards/documents/APA8.2.11.pdf

Falk, C. F., & Cai, L. (2016). A flexible full-information approach to the
modeling of response styles. Psychological Methods, 21 , 328–347.

Fox, J.-P., & Glas, C. A. W. (2001). Bayesian estimation of a multilevel IRT
model using Gibbs sampling. Psychometrika, 66 , 269-286.

Geyer, C. J. (1996). Estimation and optimization of functions. In W. R. Gilks,
S. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo
in practice (p. 241-258). New York, NY: Chapman and Hall.

Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik,
D. K., . . . Grochocinski, V. J. (2007). Full-information item bifactor
analysis of graded response data. Applied Psychological Measurement,
31 , 4–19.

Gibbons, R. D., & Hedeker, D. (1992). Full-information item bifactor analysis.
Psychometrika, 57 , 423–436.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996a). Introduc-
ing Markov chain Monte Carlo. In W. R. Gilks, S. Richardson, &
D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (p. 1-
19). New York, NY: Chapman and Hall.

Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (Eds.). (1996b). Markov
chain Monte Carlo in practice. New York, NY: Chapman and Hall.

Gill, J. (Ed.). (1996). Bayesian methods: A social and behavioral sciences
approach. New York, NY: Chapman and Hall.

Glas, C. A. W., Wainer, H., & Bradlow, E. T. (2000). Maximum marginal
likelihood and expected a posteriori estimation in testlet-based adaptive
testing. In W. J. van der Linden & C. A. W. Glas (Eds.), Computer-
ized adaptive testing: Theory and practice (pp. 271–288). Boston, MA:
Kluwer Academic Publishers.

Gu, M. G., & Kong, F. H. (1998). A stochastic approximation algorithm
with Markov chain Monte-Carlo method for incomplete data estimation
problems. The Proceedings of the National Academy of Sciences, 95 ,
7270–7274.

Haberman, S. J. (1979). The analysis of qualitative data. New York: Academic
Press.

Hartz, S. M. (2002). A Bayesian framework for the unified model for assess-
ing cognitive abilities: Blending theory with practicality. (Unpublished

254

http://faculty.psy.ohio-state.edu/edwards/documents/APA8.2.11.pdf
http://faculty.psy.ohio-state.edu/edwards/documents/APA8.2.11.pdf


doctoral dissertation). Department of Statistics, University of Illinois at
Urbana-Champaign.

Hastings, W. K. (1970). Monte Carlo simulation methods using Markov chains
and their applications. Biometrika, 57 , 97–109.

Jamshidian, M., & Jennrich, R. I. (2000). Standard errors for EM estimation.
Journal of the Royal Statistical Society: Series B, 62 , 257–270.

Langer, M. M. (2008). A reexamination of Lord’s Wald test for differential
item functioning using item response theory and modern error estima-
tion (Unpublished doctoral dissertation). Department of Psychology,
University of North Carolina at Chapel Hill.

Lehman, A. F. (1988). A quality of life interview for the chronically mentally
ill. Evaluation and Program Planning, 11 , 51–62.

Li, Z., & Cai, L. (2012, July). Summed score likelihood based indices for testing
latent variable distribution fit in item response theory. Paper presented at
the annual International Meeting of the Psychometric Society, Lincoln,
NE. Retrieved from http://www.cse.ucla.edu/downloads/files/SD2
-final-4.pdf

Louis, T. A. (1982). Finding the observed information matrix when using the
EM algorithm. Journal of the Royal Statistical Society: Series B, 44 ,
226–233.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychome-
trika, 47 , 149–174.

Maydeu-Olivares, A., Cai, L., & Hernandez, A. (2011). Comparing the fit
of IRT and factor analysis models. Structural Equation Modeling, 18 ,
333–356.

Maydeu-Olivares, A., & Joe, H. (2005). Limited and full information estima-
tion and testing in 2n contingency tables: A unified framework. Journal
of the American Statistical Association, 100 , 1009–1020.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller,
E. (1953). Equations of state space calculations by fast computing
machines. Journal of Chemical Physics, 21 , 1087–1092.

Metropolis, N., & Ulam, S. (1949). The Monte Carlo method. Journal of the
American Statistical Association, 44 , 335-341.

Mislevy, R. (1984). Estimating latent distributions. Psychometrika, 49 , 359–
381.

Monroe, S., & Cai, L. (2015). Evaluating structural equation models for
categorical outcomes: A new test statistic and a practical challenge of
interpretation. Multivariate Behavioral Research, 50 , 569-583.

255

http://www.cse.ucla.edu/downloads/files/SD2-final-4.pdf
http://www.cse.ucla.edu/downloads/files/SD2-final-4.pdf


Muraki, E. (1992). A generalized partial credit model: Application of an EM
algorithm. Applied Psychological Measurement, 16 , 159–176.

Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for
dichotomous item response theory models. Applied Psychological Mea-
surement, 24 , 50–64.

Patz, R. J., & Junker, B. W. (1999a). A straightforward approach to Markov
chain Monte Carlo methods for item response models. Journal of Edu-
cational and Behavioral Statistics, 24 , 146-178.

Preston, K., Reise, S., Cai, L., & Hays, R. (2011). Using the nominal response
model to evaluate response category discrimination in the PROMIS emo-
tional distress item pools. Educational and Psychological Measurement,
71 , 523–550.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The
Annals of Mathematical Statistics, 22 , 400–407.

Roberts, G. O., & Rosenthal, J. S. (2001). Optimal scaling for various
Metropolis-Hastings algorithms. Statistical Science, 16 , 351–367.

Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurement:
Theory, methods, and applications. New York: The Guilford Press.

Samejima, F. (1969). Estimation of latent ability using a response pattern of
graded scores. Psychometric monograph No. 17 .

Takane, Y., & de Leeuw, J. (1987). On the relationship between item response
theory and factor analysis of discretized variables. Psychometrika, 52 ,
393–408.

Thissen, D., & Cai, L. (2016). Nominal categories models. In W. J. van der
Linden (Ed.), Handbook of item response theory: Vol. 1. (pp. 51–74).
Boca Raton, FL: Chapman & Hall/CRC.

Thissen, D., Cai, L., & Bock, R. D. (2010). The nominal categories item
response model. In M. Nering & R. Ostini (Eds.), Handbook of polyto-
mous item response theory models: Developments and applications (pp.
43–75). New York, NY: Taylor & Francis.

Thissen, D., & Orlando, M. (2001). Item response theory for items scored
in two categories. In D. Thissen & H. Wainer (Eds.), Test scoring (pp.
73–140). New York, NY: Routledge.

Thissen, D., & Steinberg, L. (1986). A taxonomy of item response models.
Psychometrika, 51 , 567–577.

Thissen, D., & Steinberg, L. (1988). Data analysis using item response theory.
Psychological Bulletin, 104 , 385–395.

Tian, W., Cai, L., Thissen, D., & Xin, T. (2013). Numerical differentia-

256



tion methods for computing error covariance matrices in item response
theory modeling: An evaluation and a new proposal. Educational and
Psychological Measurement, 73 , 412–439.

Tittering, D. M. (1984). Recursive parameter estimation using incomplete
data. Journal of the Royal Statistical Society: Series B, 46 , 257–267.

Van den Noortgate, W., De Boeck, P., & Meulders, M. (2003). Cross-
classfication multilevel logistic models in psychometrics. Journal of Ed-
ucational and Behavioral Statistics, 28 , 369–386.

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current ap-
proaches and future directions. Psychological Methods, 12 , 58–79.

Woods, C. (2007). Empirical histograms in item response theory with ordinal
data. Educational and Psychological Measurement, 67 , 73–87.

Woods, C., Cai, L., & Wang, M. (2013). The Langer-improved Wald test for
DIF testing with multiple groups: Evaluation and comparison to two-
group IRT. Educational and Psychological Measurement, 73 , 532–547.

Yen, W. M. (1981). Using simulation results to choose a latent trait model.
Applied Psychological Measurement, 5 , 245–262.

257



Index

AddConst, see <Constraints>,
AddConst

Algorithm, see
<Options>, Algorithm
Alpha, see
<Options>, Alpha
Attributes, see
<Groups>, Attributes

BetaPriors, see
<Groups>, BetaPriors
Between, see <Groups>, Between
Between-Groups Factor, see
Multidimensional IRT,
Multilevel Model
Burnin, see <Options>,Burnin

Calibration
1PL, 34, 35, 104–106, 109
Parameter Estimates, 36, 37,
106

2PL, 11, 12, 16, 79–82, 100,
102, 108, 148, 154, 159,
165, 168

Parameter Estimates, 16, 17,
102, 150, 156

3PL, 20, 52, 55, 59, 62, 63
Parameter Estimates, 21, 22

Graded Response Model, 31,
63, 72–75, 93, 97, 100

Parameter Estimates, 33, 34
Nominal Categories, 40, 41, 43,

44, 78, 168, 198
Generalized Partial Credit
Model, 48, 49

Parameter Estimates, 41, 42,
46, 79

Rating Scale Model, 49–51
CaseID, see <Groups>, CaseID
CaseWeight, see
<Groups>, CaseWeight
Classical Test Theory Analysis, 30,

31
Cluster, see <Groups>, Cluster
Code, see <Groups>, Code
Coeff, see <Constraints>, Coeff
Cognitive Diagnostic Models, see
Diagnostic Classification Models
Cognitive Psychometric Models,

see
Diagnostic Classification Models
<Constraints>, 5, 6, 9, 12, 20, 21,

24, 28, 29, 32, 35, 40, 44,
50, 51, 53, 54, 78, 206

AddConst, 207, 210
Beta, 92, 111, 112, 208
Coeff, 144, 145, 159, 160, 207,

210
Cov, 53, 54, 62, 64, 74, 75, 82,

258



93, 100, 111, 207, 208, 210
Equal, 35, 44, 50, 51, 53, 62,

82, 83, 100, 105, 111, 159,
160, 164, 165, 178, 179,
207–209

Fix, 40, 44, 50, 51, 74, 75, 78,
81–83, 93, 100, 104, 148,
149, 154, 159, 164, 165,
168, 175, 178, 207–210

Free, 53, 62, 64, 74, 75, 78,
81–83, 92, 93, 100, 104,
111, 148, 149, 154, 159,
164, 165, 168, 175, 178,
179, 207–210

Guessing, 20, 21, 36, 53, 59,
62, 207, 209

Interaction, 144, 145, 154,
159, 165, 168, 175, 178

Intercept, 36, 51, 53, 62, 108,
114, 207, 209

MainEffect, 144, 145, 148,
149, 154, 159, 165, 168,
175, 178, 207

Mean, 53, 54, 62, 64, 100, 207,
208

Prior, 207, 210
Beta, 20, 21, 53, 209, 210
logNormal, 21, 210
Normal, 21, 59, 210

ScoringFn, 36, 40, 44, 50, 51,
78, 168, 207–209

Slope, 35, 36, 44, 50, 51, 53,
62, 74, 75, 78, 81, 82, 93,
100, 104, 105, 114, 207–209

Slope, 111
Value, 108, 113, 114, 168, 207,

208, 210
Convergence Criteria, 6, 15, 16, 41,

56, 188
CovariateCorr, see
<Groups>,CovariateCorr
Covariates, 92, 110, 111, 120, 132,

206, 208
Covariates, see
<Groups>,Covariates
CTX2Tbl, see <Options>, CTX2Tbl

Data Format, 5, 32, 199
Multiple Groups, 53
Response Pattern Data, 34,

202
Description, see
<Project>, Description
Diagnostic Classification Models,

142–144, 146, 205
C-RUM, 147, 148
DINA, 153, 154, 165, 177, 178
DINO, 158, 159
LDCM, 147, 153, 158, 166,

168, 175
Q-matrix, 146, 149, 163, 166

DIF, see <Options>, DIF
DIFcontrasts, see
<Options>, DIFcontrasts
DIFitems, see <Groups>,

DIFitems
Dimensions, see
<Groups>, Dimensions
DM, see <Groups>, DM
DMtable, see
<Options>, DMtable

EmpHist, see <Groups>, EmpHist
Empirical Histograms, 55, 119,

123–125, 128, 200, 201
Epsilon, see
<Options>, Epsilon

259



Equal, see <Constraints>, Equal
Etol, see <Options>, Etol

Factor Loadings, 36, 37, 68, 70,
72–74, 76, 96, 98

FactorLoadings, see
<Options>, FactorLoadings
File, see <Groups>, File
FisherInf, see
<Options>, FisherInf
FitNullModel, see
<Options>, FitNullModel
Fix, see <Constraints>, Fix
FixedTheta, see
<Groups>,FixedTheta
FixPrior, see
<Groups>,FixPrior
Free, see <Constraints>, Free

Generate, see <Groups>,
Generate

GOF, see <Options>, GOF
Goodness of Fit (GOF), 189

Item-Level, 23
Marginal Chi-Square, 23
Orlando-Thissen-Bjorner
S-X2, 36, 37

Overall, 19, 20, 47, 48, 162
Limited Information M2, 44,
47, 48

Group Label, 6, 9
<Groups>, 5, 6, 9, 12, 20, 24, 28,

29, 32, 35, 40, 44, 49–51,
53, 55, 57, 58, 62, 68, 72,
74, 78, 81, 93, 97, 100, 104,
105, 108

Attributes, 144, 148, 154,
159, 164, 165, 168, 175,
178, 203, 205

Bandwidth, 201
BetaPriors, 53–55, 72, 97,

199, 202
Between, 64, 100, 104, 108,

111, 131, 203, 204
Block, 108, 203
CaseID, 27, 64, 65, 111, 199,

200
CaseWeight, 35, 199, 202, 203
Cluster, 64, 65, 100, 104, 108,

111, 200, 203
Code, 29, 32, 44, 81, 197, 199,

200
CovariateCorr, 89, 131, 132
Covariates, 89, 92, 131, 132
Crossed, 108, 203
DIFitems, 62, 192, 203, 205
Dimensions, 49–51, 64, 68, 72,

74, 75, 78, 81, 93, 97, 100,
104, 108, 111, 126, 131,
148, 154, 159, 164, 165,
168, 175, 178, 203

DM, 144, 145, 148, 154, 159,
165, 168, 178, 203, 205

EmpHist, 55, 199, 201
Exclude, 5, 197, 198
File, 9, 12, 20, 24, 28, 29, 32,

35, 40, 44, 49–51, 53, 55,
57, 62, 64, 68, 72, 74, 78,
81, 93, 97, 100, 104, 105,
108, 111, 114, 117, 122,
124, 126, 129, 131, 148,
154, 159, 165, 168, 175,
178, 197

FixedTheta, 105
FixPrior, 199, 200
Generate, 144, 145, 159, 178,

179, 203, 205

260



Header, 122, 197
InteractionEffects, 144,

154, 155, 164, 165, 168, 175
ItemWeights, 201
ItemWeights, 199, 202
Key, 197, 199, 200
L2Covariates, 89, 131, 132
LatentDistribution, 200, 201
Missing, 64, 111, 197, 198
Model, 9, 12, 198
GPC(), 49, 198
Graded(), 12, 32, 35, 72, 74,
81, 93, 97, 100, 104, 105,
108, 114, 148, 154, 159,
165, 168, 175, 178, 198

Nominal(), 40, 44, 50, 51,
78, 168, 198

threePL, 20, 53, 55, 62
N, 9, 12, 20, 24, 28, 29, 32, 35,

40, 44, 49–51, 53–55, 57,
62, 64, 68, 72, 74, 78, 81,
93, 97, 100, 104, 105, 111,
114, 117, 122, 124, 126,
129, 131, 148, 154, 159,
165, 168, 175, 178, 197

Ncats, 9, 12, 20, 32, 35, 40, 44,
49–51, 53–55, 62, 68, 72,
74, 78, 79, 81, 93, 97, 100,
104, 105, 108, 148, 154,
159, 165, 168, 175, 178,
197, 198

Nlevel2, 131, 203, 204
Oblique, 68, 72, 97, 203, 204
PosteriorOut, 199, 201
Primary, 49–51, 78, 81, 126,

164, 203
Rotation, 68, 72, 97, 203
CFQuartimax, 68, 204

CFVarimax, 204
Target, 72, 97, 204

Select, 5, 35, 44, 64, 100, 104,
105, 108, 111, 197, 198

Ta, 79, 197, 198
Identity, 44, 168, 175

Target, 72, 97
Tc, 51, 79, 197, 198
Identity, 44

UnspecifiedTargetElement,
72, 97, 203

Varnames, 9, 12, 20, 24, 28, 29,
32, 35, 40, 44, 49–51,
53–55, 57, 58, 62, 64, 68,
72, 74, 78, 81, 93, 97, 100,
104, 105, 108, 111, 114,
117, 122, 124, 126, 129,
131, 148, 154, 159, 165,
168, 175, 178, 197

HabermanResTbl, see
<Options>, HabermanResTbl
Hierarchical Data, see
Multidimensional IRT, Multilevel
Model

Imputations, see
<Options>, Imputations
Information Function, 18, 19, 54,

187
InitGain, see
<Options>, InitGain
InteractionEffects, see

<Groups>,
InteractionEffects

ItemWeights, see
<Groups>, ItemWeights

JSI, see <Options>, JSI

261



KDE, see <Groups>, KDE
Kernel Density Estimation, 200,

201
Key, see <Groups>, Key

L2Covariates, see
<Groups>,L2Covariates
Local Dependence (LD), 23, 38,

191
Jackknife Slope Index (JSI),

36, 38, 191
Standardized Chi-square, 23,

24, 38, 189
logDetInf, see
<Options>, logDetInf

M2, see <Options>, M2
Marginal Reliability, 18, 19, 38
MaxE, see <Options>, MaxE
MaxM, see <Options>, MaxM
MaxMLscore, see
<Options>, MaxMLscore
MCMC Algorithm, 109
MCsize, see
<Options>, MCsize
Metropolis-Hastings

Robbins-Monro
Algorithm, 84, 85, 96–104, 106, 193

Crossed Random Effects, 106,
108

Fixed Effects Calibration,
104–106, 109

MinExp, see <Options>, MinExp
MinMLscore, see
<Options>, MinMLscore
Missing, see <Groups>, Missing
Missing Data, 4, 198
Mode, see <Options>, Mode
Model, see <Groups>, Model

Models, see aso Calibration252
3PL, 213
Generalized Formulation, 211
Graded Response Model, 213
Nominal Categories, 213

Monte Carlo Study, see Simulation
Mstarts, see
<Options>, Mstarts
Mtol, see <Options>, Mtol
Multidimensional IRT

Bifactor Model, 50, 51, 76–82,
162, 165

Correlated Factors, 72–76, 93,
97, 99, 100

Exploratory Factor Analysis,
67, 68, 70–73, 97, 204

Rotation, 68, 71, 72, 97, 204
Multilevel Model, 63–66,

99–101, 110, 111
Quadrature Points, 68, 75, 79
Testlet Response Model, 81, 82

Multiple Groups
Calibration, 52
Differential Item Functioning

(DIF), 58
Anchor Items, 63
Candidate DIF Items, 62
DIF Sweep, 58

Measurement Invariance, 54,
136, 209

Scoring, 56

N, see <Groups>, N
Ncats, see <Groups>, Ncats
Nested Data, see Multidimensional

IRT, Multilevel Model
NewThreadModel, see
<Options>, NewThreadModel
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Nlevel2, see <Groups>, Nlevel2
Non-Normal Theta Estimation, see
Empirical Histograms, see
Kernel Density Estimation
NormalMetric3PL, see
<Options>, NormalMetric3PL
NumDec, see <Options>, NumDec

Oblique, see
<Groups>,Oblique
<Options>, 5, 6, 9, 12, 20, 24, 28,

29, 32, 35, 40, 44, 53, 57,
58, 181

Algorithm, 89, 93, 94, 97, 100,
104, 105, 108, 109, 193, 194

Alpha, 89, 91, 193, 196
Burnin, 89, 193, 194
CTX2Tbl, 189
DIF, 192
TestAll, 59, 192
TestCandidates, 62, 63, 192

DIFcontrasts, 59, 63, 192
DMtable, 144, 183
Epsilon, 89, 91, 193, 196
Etol, 40, 41, 44, 49, 50, 55, 56,

68, 72, 78, 79, 97, 148, 154,
159, 165, 168, 175, 178,
179, 184, 187

FactorLoadings, 35, 36, 68,
72, 74–76, 93, 96–98, 183

FisherInf, 53, 54, 184, 187
FitNullModel, 44, 47, 53, 189,

191
GOF, 189, 237
Basic, 19, 189
Complete, 35–37, 189
Extended, 20, 23, 32, 44, 53,
168, 175, 189

HabermanResTbl, 35, 36, 39,
44, 189, 191

Imputations, 89, 193, 194
InitGain, 89, 91, 193, 195
ItemProposalStd, 89, 91, 109,

193, 196
JSI, 35, 36, 38, 189, 191
logDetInf, 184, 187
M2, 189, 191
Full, 44, 47, 53, 191
Mixed, 191
Ordinal, 191
OrdinalSW, 191

MaxE, 148, 154, 159, 165, 168,
175, 178, 179, 184, 187

MaxM, 148, 154, 159, 165, 168,
175, 178, 179, 184, 187

MaxMLscore, 28, 184, 185, 240
MaxMLscore , 28
MCsize, 89, 91, 100, 104, 108,

193, 196
MinExp, 189, 190
MinMLscore, 28, 184, 185, 240
Mode, 6, 9, 12, 29, 181, 183, 184
Calibration, 6, 12, 20, 32,
35, 40, 44, 49–51, 53, 68,
72, 74, 78, 81, 89, 93, 97,
100, 104, 105, 108, 109,
148, 154, 159, 165, 168,
175, 178, 194

Classical, 6, 9, 29
Scoring, 6, 24, 28, 56–58,
181

Simulation, 6, 114, 117, 122,
124, 126, 129, 131, 181, 185

Mstarts, 184, 185
Mtol, 40, 41, 44, 49, 50, 78, 79,

148, 154, 159, 165, 168,
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175, 178, 179, 184, 187
NewThreadModel, 68, 72, 97,

178, 179, 184, 188, 235–237
NormalMetric3PL, 183, 184
NumDec, 182, 183
OrthDIFcontrasts, 192
Perturbation, 187
PriorInf, 184, 187
Processors, 49, 50, 68, 72, 74,

78, 81, 93, 97, 100, 104,
108, 109, 178, 184, 188, 235

Progress, 53, 54, 122, 182, 183
ProposalStd, 89, 90, 93, 94,

97, 100, 104, 108, 109, 193,
195

ProposalStd2, 89, 90, 100,
104, 108, 109, 193, 195

Quadrature, 50, 58, 68, 72, 74,
75, 78, 79, 81, 124, 165,
184, 187

ReadPRMFile, 24, 28, 56–58,
117, 122, 124, 126, 129,
131, 184, 186

Rndseed, 89, 93, 97, 100, 104,
108, 109, 114, 117, 122,
124, 126, 129, 131, 184,
185, 194

SaveCOV, 148, 154, 159, 165,
168, 175, 178, 182, 183

SaveDBG, 182, 183
SaveEtbl, 182, 183
SaveICC, 183
SaveINF, 53, 54, 182, 183, 187
SaveMCO, 90, 104, 108, 109, 194
SavePCC, 182, 183
SavePRM, 20, 44, 53, 72, 74, 81,

93, 97, 104, 108, 109, 148,
154, 159, 165, 168, 175,

178, 182, 183
SaveSCO, 24, 25, 28, 32, 35, 36,

53, 108, 148, 154, 159, 165,
168, 175, 178, 182, 183

SaveSSP, 182, 183
Score, 25, 184
EAP, 24, 25, 53, 148, 154,
159, 165, 168, 175, 178

MAP, 25, 32, 56, 57
MI, 25, 89, 193, 194
ML, 25, 27, 28
SSC, 25, 35, 36, 58, 154, 155,
157

SE, 184, 186
FDM, 186
Fisher, 186
Mstep, 186
REM, 148, 154, 159, 165, 168,
175, 178, 179, 186

Sandwich, 186
SEM, 44, 186
Xpd, 53, 54, 186

SEMtol, 184, 187
SlopeThreshold, 33, 183, 184
SmartSEM, 186
SparseMatrix, 184, 188, 237
SStol, 184, 188
Stage1, 89, 90, 105, 108, 193,

195
Stage2, 89, 90, 105, 108, 193,

195
Stage3, 89, 91, 193, 195
Stage4, 89, 91, 193, 195
StartValFromNull, 189, 191
SX2Tbl, 35–37, 44, 189, 190
TechOut, 182, 183
Thinning, 89, 193, 194
WindowSize, 89, 91, 193, 196
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Options<Options>
NewThreadModel, 237

OrthDIFcontrasts, see
<Options>, OrthDIFcontrasts

Perturbation, see
<Options>, Perturbation
PISA data, 63
Posterior Distribution, 201
PosteriorOut, see
<Groups>,PosteriorOut
Primary, see <Groups>, Primary
Prior, see <Constraints>, Prior
Prior Distribution, 6, 21, 54, 59,

210
PriorInf, see
<Options>, PriorInf
Processors, see
<Options>, Processors
Progress, see <Options>,

Progress
<Project>, 5, 6, 9, 12, 15, 20, 24,

28, 29, 32, 35, 40, 44, 53,
57, 58, 181

Description, 6, 9, 12, 15, 20,
24, 28, 29, 32, 35, 40, 44,
53, 57, 58, 72, 74, 81, 82,
93, 97, 100, 104, 105, 108,
109, 114, 117, 122, 124,
126, 129, 131, 148, 154,
159, 165, 168, 175, 178, 181

Title, 6, 9, 12, 15, 20, 24, 28,
29, 32, 35, 40, 44, 53, 57,
58, 72, 74, 81, 82, 93, 97,
100, 104, 105, 108, 109,
114, 117, 122, 124, 126,
129, 131, 148, 154, 159,
165, 168, 175, 178, 181

ProposalStd, see
<Options>, ProposalStd
ProposalStd2, see
<Options>,ProposalStd2

Quadrature, see
<Options>, Quadrature
Quadrature Points, 15, 68, 187, 200

ReadPRMFile, see
<Options>, ReadPRMFile
Response Pattern Standardized

Residuals, 39
Restricted Latent Class Models,

see
Diagnostic Classification
Models
Rndseed, see <Options>, Rndseed
Rotation, see
<Groups>,Rotation

SaveCOV, see <Options>, SaveCOV
SaveDBG, see <Options>, SaveDBG
SaveINF, see <Options>, SaveINF
SavePCC, see <Options>, SavePCC
SavePRM, see <Options>, SavePRM
SaveSCO, see <Options>, SaveSCO
Score, see <Options>, Score
Scoring, 24–28, 31, 32, 185, 240

Expected a posteriori (EAP),
25, 152, 172, 173, 184, 185

Maximum a posteriori (MAP),
31, 32, 56, 57, 184, 185

Maximum Likelihood (ML),
28, 184, 185, 240

Multiple Imputations (MI), 89,
184, 185, 194

Sum Score Conversion to EAP
(SSC), 25, 37, 57, 58, 154,
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155, 157, 184, 185, 197
Supplying Item Parameters,

24, 26–28, 56, 58
SE, see <Options>, SE
Select, see <Groups>, Select
SEMtol, see <Options>, SEMtol
Simulation, 113

2PL, 126–131, 134, 136
3PL, 121–125, 127–130
Covariates, 120, 130–134, 136
Graded Response Model,

113–117
Item Parameters, 115, 116,

122, 129, 130, 132, 134, 136
Parameter File, 116–127,
129, 130, 132, 134

Value statements, 113, 114,
116

Multidimensional IRT
Bifactor Model, 126, 127,
130, 131, 134, 136

Multilevel Model, 130–132,
134, 136

Multiple Groups, 115, 127–132,
134, 136

Nominal Categories, 121
SlopeThreshold, see
<Options>, SlopeThreshold
SmartSEM, see <Options>,

SmartSEM
SStol, see <Options>, SStol
Stage1, see <Options>, Stage1
Stage2, see <Options>, Stage2

Stage3, see <Options>, Stage3
Stage4, see <Options>, Stage4
Standard Error (SE) Method

EM algorithm, 186
Empirical Cross-Product

Approximation, 15, 44, 54,
186

Fisher Information Matrix, 186
Forward Difference, 186
Richardson Extrapolation, 148,

186
Sandwich Covariance Matrix,

186
Supplemented EM, 44, 186

StartValFromNull, see
<Options>, StartValFromNull
SX2Tbl, see <Options>, SX2Tbl

Ta, see <Groups>, Ta
Target, see
<Groups>,Target
Tc, see <Groups>, Tc
TechOut, see <Options>, TechOut
Thinning, see <Options>,

Thinning
Title, see <Project>, Title

Value, see <Constraints>, Value
Varnames, see <Groups>,

Varnames

Weighted Data, see Data Format,
Response Pattern Data

WindowSize, see
<Options>, WindowSize
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